精英家教网 > 高中数学 > 题目详情
8.函数y=sin(π-x)-1的图象(  )
A.关于x=$\frac{π}{2}$对称B.关于y轴对称C.关于原点对称D.关于x=π对称

分析 由条件利用诱导公式、正弦函数的对称性,可得结论.

解答 解:由于函数y=sin(π-x)-1=sinx-1,当x=$\frac{π}{2}$时,函数取得最大值,
故函数的图象关于直线x=$\frac{π}{2}$对称,
故选:A.

点评 本题主要考查诱导公式,正弦函数的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设sinα是sinθ,cosθ的等差中项,sinβ是sinθ,cosθ的等比中项,求证:cos4β-4cos4α=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,某市有一条东西走向的公路l,现欲经过公路l上的O处铺设一条南北走向的公路m.在施工过程中发现在O处的正北1百米的A处有一汉代古迹.为了保护古迹,该市决定以A为圆心,1百米为半径设立一个圆形保护区.为了连通公路l、m,欲再新建一条公路PQ,点P、Q分别在公路l、m上,且要求PQ与圆A相切.
(1)当P距O处2百米时,求OQ的长;
(2)当公路PQ长最短时,求OQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数y=loga(x-1)+3(a>0,a≠1)所过定点的横、纵坐标分别是等差数列{an}的第二项与第三项,若bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,数列{bn}的前n项和为Tn,则T2015=$\frac{2015}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=$\left\{\begin{array}{l}{2{x}^{2}-1,(x≤0)}\\{lo{g}_{2}x,(x>0)}\end{array}\right.$,则不等式f(x)<1的解集是(  )
A.(-1,2)B.(-∞,2)C.(1,+∞)D.(-∞,-1)∩(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}是公差不为-1的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x为复数,则方程x4=1的解是(  )
A.l或  lB.i或-iC.1+i或1-iD.1或-1或i或-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系xoy中,不等式组$\left\{\begin{array}{l}{x+y≤4}\\{y≥x}\\{x≥0}\end{array}\right.$,所表示平面区域的外接圆面积等于(  )
A.B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)与函数y=$\sqrt{x}$的图象交于点P,若函数y=$\sqrt{x}$的图象在点P处的切线过双曲线左焦点F1(-1,0),则双曲线的离心率是(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{5}+2}}{2}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案