精英家教网 > 高中数学 > 题目详情
11.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=$\overrightarrow{a}$+λ$\overrightarrow{b}$(λ∈R),向量$\overrightarrow{d}$如图所示,若$\overrightarrow{c}$∥$\overrightarrow{d}$,则λ=(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$-\frac{4}{3}$D.$-\frac{3}{4}$

分析 利用向量的坐标运算性质、向量共线定理即可得出.

解答 解:$\overrightarrow{c}$=$\overrightarrow{a}$+λ$\overrightarrow{b}$=(1,λ),$\overrightarrow{d}$=(5,5)-(1,2)=(4,3).
∵$\overrightarrow{c}$∥$\overrightarrow{d}$,∴4λ-3=0,
解得λ=$\frac{3}{4}$.
故选:A.

点评 本题考查了向量的坐标运算性质、向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.下面的几个命题:
①若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{b}$共线;       
②长度不相等、方向相反的两向量一定是共线向量;
③若$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|$>|\overrightarrow{b}|$且$\overrightarrow{a}$与$\overrightarrow{b}$同向,则$\overrightarrow{a}>\overrightarrow{b}$;   
④由于$\overrightarrow{0}$方向不定,故$\overrightarrow{0}$不能与任何向量平行;
⑤对于任意向量$\overrightarrow{a}$,$\overrightarrow{b}$有|$\overrightarrow{a}$|-|$\overrightarrow{b}$|≤|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|
其中正确命题的序号是:②⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x<1\\ f(x-1),x≥1\end{array}\right.$,则f(log25)=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=cos(\frac{π}{2}+x)+{sin^2}(\frac{π}{2}+x)$,x∈R,则f(x)的最大值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=1,且(1-b)(sinA+sinB)=(c-b)sinC,则△ABC周长的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,若bsinA=acosB,则角B的值为(  )
A.30°B.30°C.30°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知圆锥的底面半径为1,母线长与底面的直径相等,则该圆锥的体积为$\frac{{\sqrt{3}π}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=x2-2|x-1|的单调递减区间是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)求二项式(x+2)10展开式中系数最大的项;
(2)记(x+2)n展开式中最大的二项式系数为an,求证:数列{an}单调递增;
(3)给定不小于3的正整数n,试写出数列{C${\;}_{n}^{k}$}(k=0,1,2,…,n)的单调性,并加以证明.

查看答案和解析>>

同步练习册答案