精英家教网 > 高中数学 > 题目详情
7.若函数f(x)的定义域为[-1,5],则函数f(2x+1)的定义域为(  )
A.[-1,11]B.[-1,5]C.[-1,2]D.[-2,4]

分析 根据函数定义域的求法,直接解不等式-1≤2x+1≤5,即可求函数y=f(2x+1)的定义域.

解答 解:∵函数y=f(x)的定义域为[-1,5],
由-1≤2x+1≤5,
解得-1≤x≤2,
即函数y=f(2x+1)的定义域[-1,2],
故选:C.

点评 本题主要考查复合函数定义域的求法,直接利用函数f(x)的定义域,解不等式即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,BC=BC1=$\sqrt{2}$,AB=CC1=2,点E在棱BB1上.
(Ⅰ)证明C1B⊥平面ABC;
(Ⅱ)试确定点E位置,使得二面角A-C1E-C  的余弦值为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC中,角A,B,C的对边分别为a,b,c,已知c=12,b=4$\sqrt{6}$,O为△ABC的外接圆的圆心.
①若cosA=$\frac{4}{5}$,求△ABC的面积S;
②若D为BC边上任意一点,$\overrightarrow{DO}-\overrightarrow{DA}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.判断并证明函数f(x)=x+$\frac{1}{x}$在(-∞,-1]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.圆x2+2x+y2=0关于y轴对称的圆的一般方程是x2+y2-2x=0(或(x-1)2+y2=1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设A={x|x-1>0},B={x|x<a},若A∩B≠∅,则实数a的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知过点P(m,0)的直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数).以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程式为ρ=2cosθ.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C交于两点A,B,且|PA|•|PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知E,F,G,H分别是空间四边形四条边AB,BC,CD,DA的中点,
(1)求证四边形EFGH是平行四边
(2)若AC⊥BD时,求证:EFGH为矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}满足:a1=2,an+1=1-$\frac{1}{{a}_{n}}$,设数列{an}的前n项和为Sn,则S2017=(  )
A.1007B.1008C.1009.5D.1010

查看答案和解析>>

同步练习册答案