精英家教网 > 高中数学 > 题目详情
10.以下命题正确的是:①③④.
①把函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位,可得到y=3sin2x的图象;
②四边形ABCD为长方形,AB=2,BC=1,O为AB中点,在长方形ABCD内随机取一点P,取得的P点到O的距离大于1的概率为1-$\frac{π}{2}$;
③某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有30种;
④在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0).若ξ在(-∞,1)内取值的概率为0.1,则ξ在(2,3)内取值的概率为0.4.

分析 ①根据三角函数的图象平移关系进行判断.
②根据几何概型的概率公式进行判断.
③根据排列组合的计数原理进行判断.
④根据正态分布的概率关系进行判断.

解答 解:①把函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位,得到y=3sin[2(x-$\frac{π}{6}$)+$\frac{π}{3}$]=3sin(2x-$\frac{π}{3}$+$\frac{π}{3}$)=3sin2x,即可得到y=3sin2x的图象;故①正确,
解:已知如图所示:长方形面积为2,以O为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为 $\frac{π}{2}$,
因此取到的点到O的距离大于1的概率P=$\frac{2-\frac{π}{2}}{2}$=1-$\frac{π}{4}$;故②错误;
③可分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;
                (2)A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.
∴根据分类计数原理知不同的选法共有C31C42+C32C41=18+12=30种.故要求两类课程中各至少选一门,则不同的选法共有30种正确,故③正确,
④在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0).则正态曲线关于x=2对称,
若ξ在(-∞,1)内取值的概率为0.1,则ξ在[1,2]的概率P(1<x<2)=0.5-0.=4,
则在(2,3)内取值的概率P(2<x<3)=P(1<x<2)=0.4.故④正确,
故答案为:①③④

点评 本题主要考查命题的真假判断,涉及的知识点较多,综合性较强,但难度不是很大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某商店根据以往某种玩具的销售纪录,绘制了日销售量的频率分布直方图,如图所示.,将日销售量落入各组的频率视为概率,并假设每天的销售量互相独立.
(1)求在未来连续3天里,有2天的日销售量都不低于150个且另一天的日销售量低于100个的概率;
(2)用X表示在未来3天里日销售量不低于150个的天数,求随机变量X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.△ABC中,AB=2,AC=3,∠B=60°,则cosC=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$±\frac{{\sqrt{6}}}{3}$C.$-\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a,b,c分别为△ABC内角A,B,C的对边,A=$\frac{π}{4}$,a=2,bcosC-ccosB=2$\sqrt{2}$,则∠B=$\frac{5π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数$f(x)=\left\{\begin{array}{l}\begin{array}{l}{{{log}_{\frac{1}{3}}}x,}{x>1}\end{array}\\ \begin{array}{l}{-{x^2}+2x,}{x≤1}\end{array},\end{array}\right.$则f(f(3))=-3,函数f(x)的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,且$asinB-\sqrt{3}bcosA=0$.
(1)若cosC=$\frac{4}{5}$,求cos(A+C);
(2)若b+c=5,A=$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数$f(x)=\left\{{\begin{array}{l}{{x^2}-4}&{x>0}\\{2x}&{x≤0}\end{array}}\right.$,则f[f(1)]的值为(  )
A.-6B.0C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}(x>0)}\\{f(-x)+1(x<0)}\end{array}\right.$,则f(-2)=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,若此椭圆上存在不同的两点A、B关于直线y=4x+m对称,则实数m的取值范围是-$\frac{2\sqrt{13}}{13}$<m<$\frac{2\sqrt{13}}{13}$.

查看答案和解析>>

同步练习册答案