精英家教网 > 高中数学 > 题目详情
18.已知a,b,c分别为△ABC内角A,B,C的对边,A=$\frac{π}{4}$,a=2,bcosC-ccosB=2$\sqrt{2}$,则∠B=$\frac{5π}{8}$.

分析 根据正弦定理将边化角,利用三角函数的恒等变换化简得出B,C的关系,结合三角形的内角和解出B.

解答 解:∵bcosC-ccosB=2$\sqrt{2}$,∴sinBcosC-sinCcosB=$\sqrt{2}$sinA.
即sin(B-C)=1.∴B-C=$\frac{π}{2}$.
∵B+C=π-A=$\frac{3π}{4}$,
∴B=$\frac{5π}{8}$.
故答案为:$\frac{5π}{8}$.

点评 本题考查了正弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.如图,为了测量A,C两点间的距离,选取同一平面上B、D两点,测出四边形ABCD各边的长度(单位:km):AB=5,BC=8,CD=3,DA=5,且∠B与∠D互补,则AC的长为7km.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为[$\frac{3}{8}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等差数列{an}的前n项和为Sn,若a1=1,a2=-1,则S4=(  )
A.6B.-6C.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某班5位同学分别选择参加数学、物理、化学这3个学科的兴趣小组,每人限选一门学科,则每个兴趣小组都至少有1人参加的不同选择方法种数为(  )
A.150B.180C.240D.540

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示的几何体中,ABCD为菱形,ACEF为平行四边形,△BDF为等边三角形,O为AC与BD的交点.
(Ⅰ)求证:BD⊥平面ACEF;
(Ⅱ)若∠DAB=60°,AF=FC,求二面角B-EC-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.以下命题正确的是:①③④.
①把函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位,可得到y=3sin2x的图象;
②四边形ABCD为长方形,AB=2,BC=1,O为AB中点,在长方形ABCD内随机取一点P,取得的P点到O的距离大于1的概率为1-$\frac{π}{2}$;
③某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有30种;
④在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0).若ξ在(-∞,1)内取值的概率为0.1,则ξ在(2,3)内取值的概率为0.4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中正确的是(  )
A.cosα≠0是α≠2kπ+$\frac{π}{2}$(k∈Z)的充分必要条件
B.函数f(x)=3ln|x|的零点是(1,0)和(-1,0)
C.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=$\frac{1}{2}$-p
D.若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差会改变

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆$\frac{x^2}{4}+\frac{y^2}{16}=1$被直线l截得弦的中点坐标为$(\frac{1}{2},1)$,则直线l的方程2x+y-2=0.

查看答案和解析>>

同步练习册答案