精英家教网 > 高中数学 > 题目详情
12.定义某种运算⊕,a⊕b的运算原理如图所示,设S=1⊕x,x∈[-2,2],则输出的S的最大值与最小值的差为2.

分析 由已知中的程序算法可知:该程序的功能是利用条件结构计算并输出变量S的值,模拟程序的运行过程,可得答案.

解答 解:由已知中的程序算法可知:该程序的功能是利用条件结构计算并输出变量S的值,
由程序构图可得:a⊕b=$\left\{\begin{array}{l}\left|b\right|,a≥b\\ a,a<b\end{array}\right.$,
∴S=1⊕x=$\left\{\begin{array}{l}\left|x\right|,-2≤x≤1\\ 1,1<x≤2\end{array}\right.$,
故当x=-2时,S取最大值2,
当x=0时,S取最小值0,
故S的最大值与最小值的差为2,
故答案为:2

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.焦点在x轴上的椭圆$\frac{x^2}{m}+\frac{y^2}{3}=1$的离心率是$\frac{1}{2}$,则实数m的值是(  )
A.4B.$\frac{9}{4}$C.1D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知t为常数,且0<t<1,函数g(x)=$\frac{1}{2}$(x+$\frac{1-t}{x}$)(x>0)最小值和函数h(x)=$\sqrt{{x}^{2}-2x+2+t}$的最小值都是函数f(x)=-x3+ax2+bx(a,b∈R)的零点.
(1)用含a的式子表示b,并求出a的取值范围;
(2)求函数f(x)在区间[1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数y=1-$\sqrt{1-{x}^{2}}$(-1<x<0)的反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的面积是S,且$\overrightarrow{AB}•\overrightarrow{AC}$=$\sqrt{2}$S.
(1)求sinA的值;
(2)若|$\overrightarrow{AB}$|=3,|$\overrightarrow{AB}-\overrightarrow{AC}$|=2$\sqrt{3}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0),x∈R.又f(x1)=-2,f(x2)=0且|x1-x2|的最小值等于π.则ω=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,已知向量$\overrightarrow{m}$=(a,btanA),$\overrightarrow{n}$=(b,atanB),若$\overrightarrow{m}$∥$\overrightarrow{n}$,试判定△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.平面直角坐标系中,直线l的方程是y=$\sqrt{3x}$,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,又曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0
(Ⅰ)求直线l的极坐标方程
(Ⅱ)若直线l与曲线C相交于A、B两点,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$=(cosωx,-1),$\overrightarrow{b}$($\sqrt{3}$sinωx,1)(ω>0),函数f(x)=($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$+3 图象的一条对称轴与其最近的一个对称中心的距离为$\frac{π}{4}$.
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,b=$\sqrt{3}$,S△ABC=$\frac{\sqrt{3}}{2}$,且f($\frac{c}{2}$+$\frac{π}{6}$)=$\frac{\sqrt{3}-1}{2}$,求边c的值.

查看答案和解析>>

同步练习册答案