精英家教网 > 高中数学 > 题目详情
18.设x,y,z∈R+,a=x+$\frac{1}{y}$,b=y+$\frac{1}{z}$,c=z+$\frac{1}{x}$,则a,b,c三数(  )
A.至少有一个不大于2B.都小于2
C.至少有一个不小于2D.都大于2

分析 由x,y,z∈R+,a=x+$\frac{1}{y}$,b=y+$\frac{1}{z}$,c=z+$\frac{1}{x}$,则a,b,c三数至少有一个不小于2.利用反证法与基本不等式即可证明结论.

解答 解:由x,y,z∈R+,a=x+$\frac{1}{y}$,b=y+$\frac{1}{z}$,c=z+$\frac{1}{x}$,则a,b,c三数至少有一个不小于2.
下面利用反证法证明:假设a,b,c三数都小于2.
则6>a+b+c=x+$\frac{1}{y}$+y+$\frac{1}{z}$+z+$\frac{1}{x}$≥$2\sqrt{x•\frac{1}{x}}$+2$\sqrt{y•\frac{1}{y}}$+2$\sqrt{z•\frac{1}{z}}$=6,即6>6,矛盾.
因此原结论正确.
故选:C.

点评 本题考查了基本不等式的性质、反证法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.2017年春节晚会与1月27日晚在CCTV进行直播.某广告策划公司为了了解本单位员工对春节晚会的关注情况,春节后对本单位部分员工进行了调查.其中有75%的员工看春节晚会直播时间不超过120分钟,这一部分员工看春节晚会直播时间的茎叶图如图(单位:分钟),而其中观看春节晚会直播时间超过120分钟的员工中,女性员工占$\frac{3}{5}$.若观看春节晚会直播时间不低于60分钟视为“喜爱春晚”,否则视为“不喜爱春晚”.

附:参考数据:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
(Ⅰ)若从观看春节晚会直播时间为120分钟的员工中抽取2人,求2人中恰好有1名女性员工的概率;
(Ⅱ)试完成下面的2×2列联表,并依此数据判断是否有99.9%以上的把握认为“喜爱春晚”与性别相关?
喜爱春晚不喜爱春晚合计
男性员工
女性员工
合计

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是16或64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个三位自然数abc的百位,十位,个位上的数字依次为a,b,c,当且仅当a<b且c<b时称为“凸数”.若a,b,c∈{5,6,7,8,9},且a,b,c互不相同,任取一个三位数abc,则它为“凸数”的概率是(  )
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x.
(1)求f(x)的最小正周期; 
(2)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值和最小值.
(3)求f(x)的单调区间;
(4)求f(x)的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,某公园摩天轮的半径为40m,点O距地面的高度为50m,摩天轮做匀速转动,每3min转一圈,摩天轮上的点P的起始位置在最低点处.
(Ⅰ)已知在时刻t(min)时点P距离地面的高度f(t)=Asin(ωt+φ)+h,求2018min时点P距离地面的高度;
(Ⅱ)当离地面50+20$\sqrt{3}$m以上时,可以看到公园的全貌,求转一圈中有多少时间可以看到公园全貌?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tan(θ-π)=2,则sin2θ+sinθcosθ-2cos2θ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线y=Asin(ωx+φ) (A>0,ω>0)上的一个最高点的坐标为($\frac{π}{8}$,$\sqrt{2}$),此点到相邻最低点间的曲线与x轴交于点 ($\frac{3}{8}$π,0),若φ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)试求这条曲线的函数表达式及单调递增区间;
(2)用“五点法”画出(1)中函数在$[{-\frac{π}{8},\frac{7π}{8}}]$上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.两个复数z1=a1+b1i,z2=a2+b2i,(a1,b1,a2,b2都是实数且z1≠0,z2≠0),对应的向量在同一直线上的充要条件是(  )
A.$\frac{b_1}{a_1}•\frac{b_2}{a_2}=-1$B.a1a2+b1b2=0
C.$\frac{b_1}{a_1}=\frac{b_2}{a_2}$D.a1b2=a2b1

查看答案和解析>>

同步练习册答案