精英家教网 > 高中数学 > 题目详情
已知[x]表示不超过实数x的最大整数(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定义{x}=x-[x],求{
2013
2014
}+{
20132
2014
}+{
20133
2014
}+…+{
20132014
2014
}=(  )
A、1006B、1007
C、1008D、2014
考点:进行简单的合情推理
专题:计算题,推理和证明
分析:利用新定义,代入计算可得结论.
解答: 解:{
2013
2014
}=
2013
2014
,{
20132
2014
}={
(2014-1)2
2014
}={
20142-2×2014+1
2014
}=
1
2014

{
20133
2014
}={
(2014-1)3
2014
}=
2013
2014
,{
20134
2014
}={
(2014-1)4
2014
}=
1
2014

∴指数为奇次幂时,值为
2013
2014
,为偶次幂时,值为
1
2014

∴原式=1007,
故选:B.
点评:本题考查简单的合情推理,考查新定义,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
x+1,x≤1
2x-1,x>1
,则f(3)的值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式2x2-4x22ax+a对一切实数x都成立,则实数a的取值范围是(  )
A、(1,4)
B、(-4,-1)
C、(-∞,-4)∪(-1,+∞)
D、(-∞,1)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知5555=8k+m,(k,m∈N*),则整数m可以为(  )
A、1B、2C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上的动点,F1,F2分别是其左、右焦点,O为坐标原点,若
|PF1|+|PF2|
|OP|
的最大值是
6
,则此双曲线的离心率是(  )
A、
3
B、
6
2
C、
3
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线
x=3secθ
y=4tanθ
(θ为参数)的焦距是(  )
A、2B、5C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,动点P在以点C为圆心,且与直线BD相切的圆内运动,设
AP
AD
AB
(α,β∈R),则α+β的取值范围是(  )
A、(0,
4
3
]
B、[
4
3
5
3
]
C、(1,
4
3
D、(1,
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出五个结论:①OM∥PD;②OM∥平面PCD;③OM∥平面PDA;④OM∥平面PBA,⑤OM∥平面PCB.
其中正确的个数有(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点A(1,-1),B(-1,-3).
(Ⅰ) 求过A、B两点的直线方程;
(Ⅱ) 求线段AB的垂直平分线l的直线方程;
(Ⅲ)若圆C经过A、B两点且圆心在直线x-y+1=0上,求圆C的方程.

查看答案和解析>>

同步练习册答案