精英家教网 > 高中数学 > 题目详情
曲线
x=3secθ
y=4tanθ
(θ为参数)的焦距是(  )
A、2B、5C、8D、10
考点:参数方程化成普通方程
专题:
分析:由曲线
x=3secθ
y=4tanθ
,可得secθ=
x
3
tanθ=
y
4
.利用sec2θ-tan2θ=1,即可得出.
解答: 解:由曲线
x=3secθ
y=4tanθ
,∴secθ=
x
3
tanθ=
y
4

∴sec2θ-tan2θ=
x2
9
-
y2
16
=1,
c=
9+16
=5.
∴此双曲线的焦距2c=10.
故选:D.
点评:本题考查了sec2θ-tan2θ=1、双曲线的标准方程及其性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
xa-2   (0<x≤2)
(
1
2
)x+
1
4
  (x>2)
是(0,+∞)上的单调递减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈[1,∞)时,下列不等式恒成立的是(  )
A、lnx≤1-
1
x
B、lnx≤
2(x-1)
x+1
C、lnx≤
1
2
(x-
1
x
D、lnx≥x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M={x|x2≤4},N={x|
2
x-1
≥1},则M∩N=(  )
A、{x|1<x≤2}
B、{x|-2≤x≤1}
C、{x|1≤x≤2}
D、{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知[x]表示不超过实数x的最大整数(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定义{x}=x-[x],求{
2013
2014
}+{
20132
2014
}+{
20133
2014
}+…+{
20132014
2014
}=(  )
A、1006B、1007
C、1008D、2014

查看答案和解析>>

科目:高中数学 来源: 题型:

若A={x∈N*|x<25},B={y|y=
x
,x∈A},则A∩B=(  )
A、{0,1,2,3,4}
B、{2,3,4,5}
C、{0,2,3,4}
D、{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
lim
x→1
x-1
x2+ax+b
=
1
4
,则a•b=(  )
A、-6B、-5C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个说法:
①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
②在刻画回归模型的拟合效果时,相关指数R2的值越大,说明拟合的效果越好;
③设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为
y
=0.85x-85.71说明若该大学某女生身高增加1cm,则其体重约增加0.85kg;
④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的把握程度越大.其中正确的说法是(  )
A、①④B、②④C、①③D、②③

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为R,A={x|x>-1},B={x|x≤5},求:
(1)A∩B;  (2)A∪B;  (3)CRA、CRB; (4)(CRA)∩(CRB);(5)(CRA)∪(CRB).

查看答案和解析>>

同步练习册答案