精英家教网 > 高中数学 > 题目详情
如图,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,动点P在以点C为圆心,且与直线BD相切的圆内运动,设
AP
AD
AB
(α,β∈R),则α+β的取值范围是(  )
A、(0,
4
3
]
B、[
4
3
5
3
]
C、(1,
4
3
D、(1,
5
3
考点:向量在几何中的应用
专题:综合题,平面向量及应用
分析:建立直角坐标系,写出点的坐标,求出BD的方程,求出圆的方程;设出P的坐标,求出三个向量的坐标,将P的坐标用α,β表示,代入圆内方程求出范围.
解答: 解:以A为坐标原点,AB为x轴,DA为y轴建立平面直角坐标系,则A(0,0),D(0,1),C(1,1),B(3,0)
直线BD的方程为x+3y-3=0,C到BD的距离d=
10
10

∴以点C为圆心,且与直线BD相切的圆方程为(x-1)2+(y-1)2=
1
10

设P(x,y)则
AP
=(x,y),
AD
=(0,1),
AB
=(3,0)
∴(x,y)=(3β,α)
∴x=3β,y=α,
∵P在圆内
∴(3β-1)2+(α-1)2
1
10

解得1<α+β<
5
3

故选:D.
点评:通过建立直角坐标系将问题代数化、考查直线与圆相切的条件、考查向量的坐标公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A={平行四边形},B={对角线长相等的四边形},C={对角线互相垂直的四边形},则A∩B=
 
;A∩C=
 
;(A∩B)∪C=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数f(x)与g(x)是同一函数的是(  )
A、f(x)=(x-1)0,g(x)=1
B、f(x)=x,g(x)=
x2
C、f(x)=x2,g(x)=(x+1)2
D、f(x)=|x|,g(x)=
x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知[x]表示不超过实数x的最大整数(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定义{x}=x-[x],求{
2013
2014
}+{
20132
2014
}+{
20133
2014
}+…+{
20132014
2014
}=(  )
A、1006B、1007
C、1008D、2014

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递增,若数列{an}是等差数列,且a3<0,则f(a1)+f(a2)+f(a3)+f(a4)+f(a5)的值为(  )
A、恒为正数B、恒为负数
C、恒为0D、可正可负

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
lim
x→1
x-1
x2+ax+b
=
1
4
,则a•b=(  )
A、-6B、-5C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinωx+cosωx(ω>0),如果存在实数x1,使得对任意的实数x,都有f(x1)≤f(x)≤f(x1+2013)成立,则ω的最小值为(  )
A、
1
4026
B、
π
4026
C、
1
2013
D、
π
2013

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过定点M(1,-1)的直线与抛物线y2=2x交于A,B两点,且OA⊥OB,O为坐标原点,则该直线的方程为(  )
A、y=-x
B、y=2x-3
C、y=3x-4
D、y=x-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+b,若a∈(0,
1
2
),对于任意的x∈[-1,1],恒有|f(x)|≤1,求b的取值范围.

查看答案和解析>>

同步练习册答案