精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sinωx+cosωx(ω>0),如果存在实数x1,使得对任意的实数x,都有f(x1)≤f(x)≤f(x1+2013)成立,则ω的最小值为(  )
A、
1
4026
B、
π
4026
C、
1
2013
D、
π
2013
考点:两角和与差的正弦函数
专题:三角函数的图像与性质
分析:化简可得f(x)=
2
sin(ωx+
π
4
),进而可得(n+
1
2
)•
ω
=2013,n为自然数,解ω可得.
解答: 解:化简可得f(x)=sinωx+cosωx=
2
sin(ωx+
π
4
),
要满足使得对任意的实数x,都有f(x1)≤f(x)≤f(x1+2013)成立,
则(n+
1
2
)•
ω
=2013,n为自然数,
解得ω=
2n+1
2013
π,∴当n=0时,ω的值最小,最小为
π
2013

故选:D
点评:本题考查三角函数的公式的应用,涉及周期性,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某产品每三年降价
1
4
,目前价格是640,则9年后此产品的价格是(  )
A、270B、240
C、210D、360

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上的动点,F1,F2分别是其左、右焦点,O为坐标原点,若
|PF1|+|PF2|
|OP|
的最大值是
6
,则此双曲线的离心率是(  )
A、
3
B、
6
2
C、
3
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,动点P在以点C为圆心,且与直线BD相切的圆内运动,设
AP
AD
AB
(α,β∈R),则α+β的取值范围是(  )
A、(0,
4
3
]
B、[
4
3
5
3
]
C、(1,
4
3
D、(1,
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-1  x>0
1  x<0
,则
(a+b)+(a-b)•f(a-b)
2
(a≠b)的值为(  )
A、aB、b
C、a,b中较小的数D、a,b中较大的数

查看答案和解析>>

科目:高中数学 来源: 题型:

P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出五个结论:①OM∥PD;②OM∥平面PCD;③OM∥平面PDA;④OM∥平面PBA,⑤OM∥平面PCB.
其中正确的个数有(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知gn(x)+1=
n
k=1
xn
k2
(x∈R,n∈N*),则下列说法正确的是(  )
①gn(x)关于点(0,-1)成中心对称.
②gn(x)在(0,+∞)单调递增.
③当n取遍N*中所有数时不可能存在c∈[
2
3
,1]使得gn(c)=0.
A、①②③B、②③C、①③D、②

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数是偶函数的是(  )
A、y=(x+1)2
B、y=|x|•x
C、y=2x+2-x
D、y=
x
x2+sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-2≤x≤4},B={x|x>a},3∈A∩B,求a的值.

查看答案和解析>>

同步练习册答案