精英家教网 > 高中数学 > 题目详情
18.已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N*).
(1)证明:数列{an+1-an}是等比数列;
(2)设bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$,Tn是数列{bn}的前n项和,证明:Tn<$\frac{1}{2}$.

分析 (1)通过对an+2=3an+1-2an(n∈N*)变形可知an+2-an+1=2(an+1-an)(n∈N*),进而可知数列{an+1-an}是首项、公比均为2的等比数列;
(2)通过(1)可知an+1-an=2n,进而可知数列{an}是递增的,裂项可知bn=$\frac{1}{2}$($\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$),进而并项相加、放缩即得结论.

解答 证明:(1)∵an+2=3an+1-2an(n∈N*),
∴an+2-an+1=2(an+1-an)(n∈N*),
又∵a2-a1=3-1=2,
∴数列{an+1-an}是首项、公比均为2的等比数列;
(2)由(1)可知an+1-an=2n,显然数列{an}是递增的,
∴bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{2}$•$\frac{{2}^{n}}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{2}$•$\frac{{a}_{n+1}-{a}_{n}}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{2}$($\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$),
于是Tn=$\frac{1}{2}$($\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$)
=$\frac{1}{2}$($\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{n+1}}$)
=$\frac{1}{2}$(1-$\frac{1}{{a}_{n+1}}$)
<$\frac{1}{2}$.

点评 本题考查等比数列的证明及数列的求和,考查裂项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知a,b∈R,且ab≠0,那么“a>b”是“lg(a-b)>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,△ABC为边长为1的正三角形,且AA1=2,D为AA1上的点,且A1D=$\frac{1}{4}$,F为AB的中点.
(1)求证:B1D⊥A1C;
(2)求直线A1C1与平面A1CF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b,c分别是△ABC三个内角A,B,C的对边,acosC+$\sqrt{3}$asinC-b-c=0.
(1)求角A的大小;
(2)若a=2,$\overrightarrow{BA}$$•\overrightarrow{AC}$=-2,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.证明下列等式:
(1)$\frac{1+sin2φ}{sinφ+cosφ}$=sinφ+cosφ
(2)sinθ(1+cos2θ)=sin2θcosθ
(3)$\frac{1-ta{n}^{2}\frac{α}{2}}{1+ta{n}^{2}\frac{α}{2}}$=coaα
(4)4sinθcos2$\frac{θ}{2}$=2sinθ+sin2θ:
(5)$\frac{2sinα-sin2α}{2sinα+sin2α}$=tan2$\frac{α}{2}$
(6)cosα(cosα-cosβ)+sinα(sinα-sinβ)=2sin2$\frac{α-β}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.向量$\overrightarrow{a}$=(x,4,5),$\overrightarrow{b}$=(1,-2,2),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为$\frac{\sqrt{2}}{6}$,则x的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其离心率与双曲线$\frac{{x}^{2}}{3}$-y2=1的离心率互为倒数,而直线x+y=$\sqrt{3}$恰过椭圆C的焦点.
(1)求椭圆C的方程;
(2)设椭圆的左右顶点分别为A、B,上顶点为C,点P是椭圆上不同于顶点的任意一点,连接BP交直线AC于点M,连接CP与x轴交于点N,求证2kMN-kMB=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源:2017届重庆市高三理上适应性考试一数学试卷(解析版) 题型:解答题

已知数列的前项和为,且

(1)求数列的通项公式;

(2)若数列满足,且数列的前项和为,求证:

查看答案和解析>>

同步练习册答案