分析 (1)通过对an+2=3an+1-2an(n∈N*)变形可知an+2-an+1=2(an+1-an)(n∈N*),进而可知数列{an+1-an}是首项、公比均为2的等比数列;
(2)通过(1)可知an+1-an=2n,进而可知数列{an}是递增的,裂项可知bn=$\frac{1}{2}$($\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$),进而并项相加、放缩即得结论.
解答 证明:(1)∵an+2=3an+1-2an(n∈N*),
∴an+2-an+1=2(an+1-an)(n∈N*),
又∵a2-a1=3-1=2,
∴数列{an+1-an}是首项、公比均为2的等比数列;
(2)由(1)可知an+1-an=2n,显然数列{an}是递增的,
∴bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{2}$•$\frac{{2}^{n}}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{2}$•$\frac{{a}_{n+1}-{a}_{n}}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{2}$($\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$),
于是Tn=$\frac{1}{2}$($\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$)
=$\frac{1}{2}$($\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{n+1}}$)
=$\frac{1}{2}$(1-$\frac{1}{{a}_{n+1}}$)
<$\frac{1}{2}$.
点评 本题考查等比数列的证明及数列的求和,考查裂项相消法,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 奇函数 | B. | 偶函数 | ||
| C. | 非奇非偶函数 | D. | 既是奇函数又是偶函数 |
查看答案和解析>>
科目:高中数学 来源:2017届重庆市高三理上适应性考试一数学试卷(解析版) 题型:解答题
已知数列
的前
项和为
,且
.
(1)求数列
的通项公式;
(2)若数列
满足
,且数列
的前
项和为
,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com