精英家教网 > 高中数学 > 题目详情
8.如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC.
(Ⅰ)求证:BC⊥A1D;
(Ⅱ)求证:平面A1BC⊥平面A1BD;
(Ⅲ)求点C到平面A1BD的距离.

分析 (Ⅰ)由线面垂直得A1O⊥BC,再由BC⊥DC,能证明BC⊥A1D.
(Ⅱ)由BC⊥A1D,A1D⊥A1B,得A1D⊥平面A1BC,由此能证明平面A1BC⊥平面A1BD.
(III)由${V}_{C-{A}_{1}BD}$=${V}_{{A}_{1}-DBC}$,能求出点C到平面A1BD的距离.

解答 证明:(Ⅰ)∵A1O⊥平面DBC,∴A1O⊥BC,
又∵BC⊥DC,A1O∩DC=O,
∴BC⊥平面A1DC,∴BC⊥A1D.
(Ⅱ)∵BC⊥A1D,A1D⊥A1B,BC∩A1B=B,
∴A1D⊥平面A1BC,
又∵A1D?平面A1BD,
∴平面A1BC⊥平面A1BD.
解:(III)设C到平面A1BD的距离为h,
∵${V}_{C-{A}_{1}BD}$=${V}_{{A}_{1}-DBC}$,
∴$\frac{1}{3}{S}_{△{A}_{1}BD}•h$=$\frac{1}{3}{S}_{△DBC}•{A}_{1}O$,
又∵${S}_{△{A}_{1}BD}$=S△DBC,${A}_{1}O=\frac{6×8}{10}=\frac{24}{5}$,∴$h=\frac{24}{5}$.
∴点C到平面A1BD的距离为$\frac{24}{5}$.

点评 本题考查异面直线垂直的证明,考查面面垂直的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在(x2-$\frac{1}{2x}$)6的展开式中,常数项等于$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.正方体ABCD-A1B1C1D1的棱长为3,点P是CD上一点,且DP=1,过点A1,C1,P三点的平面交底面ABCD于PQ,点Q在直线BC上,则PQ=$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(1,$\frac{\sqrt{2}}{2}$),且离心率为$\frac{\sqrt{2}}{2}$,过点P的动直线l与椭圆相交于A,B两点.
(1)求椭圆E的方程;
(2)若椭圆E的右焦点是P,其右准线与x轴交于点Q,直线AQ的斜率为k1,直线BQ的斜率为k2,求证:k1+k2=0;
(3)设点P(t,0)是椭圆E的长轴上某一点(不为长轴顶点及坐标原点),是否存在与点P不同的定点Q,使得$\frac{QA}{QB}$=$\frac{PA}{PB}$恒成立?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,圆O为△ABC的外接圆,D为$\widehat{AC}$的中点,BD交AC于E.
(Ⅰ)证明:AD2=DE•DB;
(Ⅱ)若AD∥BC,DE=2EB,AD=$\sqrt{6}$,求圆O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l的参数方程为:$\left\{\begin{array}{l}{x=cos90°+tcos60°}\\{y=cos45°+tcos30°}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C极坐标方程为:ρ=-2cos(θ+$\frac{3π}{4}$),设直线l与曲线C的交点为A,B两点.
(1)将直线l化成直角坐标方程,写成斜截式,并求出直线l的倾斜角;
(2)若曲线C上存在异于A,B的点C,使得△ABC的面积最大,求出面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(c,0),AB为过椭圆E中心的弦,则△AFB的面积最大值是bc;若点F关于直y=$\frac{b}{c}$x的对称点Q在椭圆上,则椭圆的离心率是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆Γ的$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点($\sqrt{3}$,$\frac{\sqrt{3}}{2}$),离心率为$\frac{1}{2}$.
(1)求椭圆Γ的方程;
(2)过点(1,0)作两条直线l1,l2,其中l1交椭圆Γ于A,B,l2交椭圆Γ于C,D,若l1⊥l2,求四边形ACBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设命题p:|x-2|>1;命题q:x2-(2a+1)x+a(a+1)≤0.若?p是?q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案