精英家教网 > 高中数学 > 题目详情
17.已知椭圆Γ的$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点($\sqrt{3}$,$\frac{\sqrt{3}}{2}$),离心率为$\frac{1}{2}$.
(1)求椭圆Γ的方程;
(2)过点(1,0)作两条直线l1,l2,其中l1交椭圆Γ于A,B,l2交椭圆Γ于C,D,若l1⊥l2,求四边形ACBD面积的最小值.

分析 (1)运用椭圆的离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆方程;
(2)分类讨论:当AB或CD中的一条与x轴垂直而另一条与x轴重合时,此时四边形ABCD面积S=2b2.当直线AC和BD的斜率都存在时,不妨设直线AC的方程为y=k(x-1),则直线BD的方程为y=-$\frac{1}{k}$(x-1).分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得|AB|,|CD|.利用四边形ABCD面积S=$\frac{1}{2}$|AB|•|CD|,即可得到关于斜率k的式子,再利用配方和二次函数的最值求法,即可得出.

解答 解:(1)由题意可得e=$\frac{c}{a}$=$\frac{1}{2}$,a2-b2=c2
$\frac{3}{{a}^{2}}$+$\frac{3}{4{b}^{2}}$=1,
解得a=2,b=$\sqrt{3}$,
即有椭圆方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)由椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1可得a2=4,b2=3,c=$\sqrt{{a}^{2}-{b}^{2}}$=1.
①当AB或CD中的一条与x轴垂直而另一条与x轴重合时,
此时四边形ACBD面积S=$\frac{1}{2}$•2a•$\frac{2{b}^{2}}{a}$=2b2=6.
②当直线AB和CD的斜率都存在时,不妨设直线AB的方程为y=k(x-1),
则直线CD的方程为y=-$\frac{1}{k}$(x-1).
联立$\left\{\begin{array}{l}{y=k(x-1)}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,化为(3+4k2)x2-8k2x+4k2-12=0,
∴x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$.
∴|AB|=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$
=$\sqrt{(1+{k}^{2})[(\frac{8{k}^{2}}{3+4{k}^{2}})^{2}-\frac{16{k}^{2}-48}{3+4{k}^{2}}]}$=$\frac{12(1+{k}^{2})}{3+4{k}^{2}}$.
把k换成-$\frac{1}{k}$,可得|CD|=$\frac{12(1+{k}^{2})}{4+3{k}^{2}}$.
∴四边形ACBD面积S=$\frac{1}{2}$|AB|•|CD|=$\frac{1}{2}$•$\frac{12(1+{k}^{2})}{3+4{k}^{2}}$•$\frac{12(1+{k}^{2})}{4+3{k}^{2}}$
=$\frac{1}{2}$•$\frac{144(1+{k}^{2})^{2}}{12{k}^{4}+25{k}^{2}+12}$=$\frac{1}{2}$•$\frac{144}{-(\frac{1}{1+{k}^{2}}-\frac{1}{2})^{2}+\frac{49}{4}}$,
当且仅当$\frac{1}{1+{k}^{2}}$=$\frac{1}{2}$,即k2=1时,S取得最小值$\frac{288}{49}$.
综上可知:四边形ACBD的面积S的最小值是$\frac{288}{49}$.

点评 本题考查椭圆的标准方程及其性质、相互垂直的直线斜率之间的关系、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式、四边形面积计算公式、二次函数的最值求法等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,AB为圆柱的轴,CD为底面直径,E为底面圆周上一点,AB=1,CD=2,CE=DE.
求(1)三棱锥A-CDE的全面积;
(2)点D到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC.
(Ⅰ)求证:BC⊥A1D;
(Ⅱ)求证:平面A1BC⊥平面A1BD;
(Ⅲ)求点C到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,左顶点为A(-3,0),圆心在原点的圆O与椭圆的内接三角形△AEF的三条边都相切.
(1)求椭圆方程;
(2)求圆O方程;
(3)B为椭圆的上顶点,过B作圆O的两条切线,分别交椭圆于M,N两点,试判断并证明直线MN与圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点P是椭圆C1:$\frac{{x}^{2}}{4}$+y2=1上的动点,F1,F2分别是椭圆C1的左、右焦点,椭圆C2以椭圆C1的长轴为短轴,且与C1有相同的离心率.
(1)求椭圆C1的焦点坐标、离心率及PF1的最大值;
(2)求椭圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,底面为正方形且各侧棱长均相等的四棱锥V-ABCD可绕着棱AB任意旋转,若AB?平面α,M、N分别是AB、CD的中点,AB=2,VA=$\sqrt{5}$,点V在平面α上的射影为点O,则当ON的最大时,二面角C-AB-O的大小是(  )
A.90°B.105°C.120°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点M是椭圆$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}$=1上一点,F1,F2为椭圆的焦点,且△F1MF2的面积等于8,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某公司决定采用技术改造和投放广告两项措施来获得更大的收益.通过对市场的预测,当对两项投入都不大于3(百万元)时,每投入x(百万元) 技术改造费,增加的销售额y1满足y1=-$\frac{1}{3}$x3+2x2+5x(百万元);每投入x(百万元) 广告费用,增加的销售额y2满足y2=-2x2+14x(百万元).现该公司准备共投入3(百万元),分别用于技术改造投入和广告投入,请设计一种资金分配方案,使得该公司获得最大收益.(注:收益=销售额-投入,答案数据精确到0.01)(参考数据:$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若α,β为锐角,$cos(\frac{π}{4}+α)=\frac{1}{3},cos(\frac{π}{4}+\frac{β}{2})=\frac{{\sqrt{3}}}{3}$,则$cos(α-\frac{β}{2})$=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{6}}}{9}$D.$\frac{{5\sqrt{3}}}{9}$

查看答案和解析>>

同步练习册答案