精英家教网 > 高中数学 > 题目详情
设等边三角形的边长为a,P是△ABC内的任意一点,且P到三边AB、BC、CA的距离分别为d1、d2、d3,则有d1+d2+d3为定值
3
2
a,由以上平面图形的特性类比空间图形:设正四面体ABCD的棱长为a,P是正四面体ABCD内任意一点,即到四个面ABC,ABD,ACD,BCD的距离分别为d1、d2、d3、d4,则有d1+d2+d3+d4为定值(  )
A、
3
2
a
B、
3
4
a
C、
6
3
a
D、
2
3
a
考点:类比推理
专题:探究型,推理和证明
分析:通过类比,点到直线的距离类比为点到平面的距离,面积类比为体积即可.判断求解h1+h2+h3+h4的定值.
解答: 解:由于等边△ABC的边长为a,P是△ABC内的任意一点,且P到三边AB,BC,CA的距离分别为d1,d2,d3,则有d1+d2+d3为定值
3
2
a;
证明如下:如图,△ABC是等边三角形,点P是等边三角形内部任一点.
S△APB=
1
2
a•PE,S△CPB=
1
2
a•PE,S△APC=
1
2
a•PG,
于是S△APB+S△CPB+S△APC=
1
2
a•PE+
1
2
a•PF+
1
2
a•PG,
1
2
a•PE+
1
2
a•PF+
1
2
a•PG=S,
∴PE+PF+PG=
2S
a
为定值.
由线类比为面,点到直线的距离类比为点到平面的距离,面积类比为体积得到:有d1+d2+d3+d4为定值
6
3
a.
故选:C.
点评:本题考查类比推理,升维类比是一种比较重要的类比方式,要掌握好其类比规则,对于类比还有一点要注意,那就是类比的结论不一定是正确的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线
x2
25
-
y2
9
=1的两个焦点为F1,F2,P为双曲线上的点,|PF1|=12,|PF2|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
a
b
满足|
b
|=1,且
b
b
-
a
的夹角为30°,则|
a
|的取值范围是(  )
A、(0,
1
2
B、[
1
2
,1)
C、[1,+∞)
D、[
1
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a1,a2,a3,a4,a5成等比数列,其中a1=2,a5=8,则a3的值为(  )
A、5B、4C、-4D、±4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列关于向量的等式中,正确的是(  )
A、
AB
+
BC
+
CA
=
0
B、
AB
=
BC
-
AC
C、
AB
=
CA
-
BC
D、
AB
=
BC
+
CA

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M=|x|0<x<5,x∈N},N={x|x2=4},下列结论成立的是(  )
A、N⊆M
B、M∪N=M
C、M∪N=N
D、M∩N={2}

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公差不为零的等差数列,它的前n项和为Sn,且S1、S2、S4成等比数列,则
a3
a1
等于(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|3x-7≥8-2x},B={x|2≤x<4},则A∩B=(  )
A、{x|x≥3}
B、{x|3≤x<4}
C、{x|2≤x<4}
D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为S,且
AB
BC
=1,若
1
2
<S<
3
2
,则∠ABC的范围是(  )
A、(
π
6
π
3
B、(
π
4
π
3
C、(
3
6
D、(
3
4

查看答案和解析>>

同步练习册答案