精英家教网 > 高中数学 > 题目详情
2.已知抛物线C:y2=2px(p>0)过点(1,-2),经过焦点F的直线l与抛物线C交于A,B两点,A在x轴的上方,Q(-1,0),若以QF为直径的圆经过点B,则|AF|-|BF|=(  )
A.2$\sqrt{3}$B.2$\sqrt{5}$C.2D.4

分析 求出抛物线的方程,设直线l的倾斜角为α,|AF|-|BF|=$\frac{2}{1-cosα}$-$\frac{2}{1+cosα}$=$\frac{4cosα}{1-co{s}^{2}α}$.利用以QF为直径的圆经过点B,得出cosα=1-cos2α,即可得出结论.

解答 解:∵抛物线C:y2=2px(p>0)过点(1,-2),
∴4=2p,∴p=2,
∴抛物线C:y2=4x.
设直线l的倾斜角为α,则|AF|=|AF|cosα+|QF|=|AF|cosα+2,
∴|AF|=$\frac{2}{1-cosα}$.
同理|BF|=$\frac{2}{1+cosα}$,
∴|AF|-|BF|=$\frac{2}{1-cosα}$-$\frac{2}{1+cosα}$=$\frac{4cosα}{1-co{s}^{2}α}$.
∵以QF为直径的圆经过点B,
∴BQ⊥BF,
∴|BF|=$\frac{2}{1+cosα}$=2cosα,即cosα=1-cos2α,
∴|AF|-|BF|=$\frac{2}{1-cosα}$-$\frac{2}{1+cosα}$=$\frac{4cosα}{1-co{s}^{2}α}$=4
故选D.

点评 本题考查抛物线方程与性质,考查圆的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设$\overrightarrow{a}$=(2cosx+2$\sqrt{3}$sinx,1),$\overrightarrow{b}$=(cosx,-y)满足$\overrightarrow{a}$•$\overrightarrow{b}$=0,y=f(x)
(1)求函数f(x)的最值;
(2)已知△ABC的内角A,B,C的对边分别为a,b,c,若f(x)的最大值恰好是f($\frac{A}{2}$),当a=2时,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设命题p:函数f(x)=lg[(a2-1)x2+(a+1)x+1]的值域为R;命题q:函数y=$\frac{|{x}^{2}-1|}{x-1}$的图象与函数y=ax-2的图象恰有两个交点;如果命题“p∨q”为真命题,且“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四个函数中,以π为最小正周期,且在区间$(\frac{π}{2},π)$上为增函数的是(  )
A.y=sin2xB.y=|cosx|C.y=-tanxD.$y=cos\frac{x}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为3x±4y=0,右焦点为(5,0),则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,正方形ABCD和直角梯形BDEF所在的平面互相垂直,O为正方形ABCD的中心,AD=DE=2$\sqrt{2}$,EF∥BD,BD=2EF,DE⊥BD.
(Ⅰ)求证:OE∥平面BFC;
(Ⅱ)求二面角A-CF-B正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线C:$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{6}$=1(m>0)的右焦点为F,则点F到渐近线的距离为(  )
A.$\sqrt{6}$B.6C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在三棱锥P-ABC中,AB⊥BC,AB=6,$BC=2\sqrt{3}$,O为AC的中点,过C作BO的垂线,交BO、AB分别于R、D.若∠DPR=∠CPR,则三棱锥P-ABC体积的最大值为3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线8mx2-my2=8的一个焦点是(3,0),那么m的值为1.

查看答案和解析>>

同步练习册答案