精英家教网 > 高中数学 > 题目详情
11.在△ABC中,a,b,c分别是角A,B,C的对边,若a=1,b=$\sqrt{3}$,B=60°,则△ABC的面积为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.1D.$\sqrt{3}$

分析 由已知利用正弦定理可得sinA=$\frac{asinB}{b}$=$\frac{1}{2}$,结合大边对大角可求A,进而利用三角形内角和定理可求C,利用三角形面积公式即可计算得解.

解答 解:∵a=1,b=$\sqrt{3}$,B=60°,
∴由正弦定理可得:sinA=$\frac{asinB}{b}$=$\frac{1×\frac{\sqrt{3}}{2}}{\sqrt{3}}$=$\frac{1}{2}$,
∵a<b,A<60°,
∴A=30°,C=180°-A-B=90°,
∴S△ABC=$\frac{1}{2}$ab=$\frac{1}{2}×1×\sqrt{3}$=$\frac{\sqrt{3}}{2}$.
故选:B.

点评 本题主要考查了正弦定理,大边对大角,三角形内角和定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知f(x)是定义在R上的奇函数,且周期为2,当x∈(0,1]时,f(x)=1-x,则函数f(x)在[0,2017]上的零点个数是(  )
A.1008B.1009C.2017D.2018

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等差数列{an}中,Sn为其前n项和,S4=π(其中π为圆周率),a4=2a2,现从此数列的前30项中随机选取一个元素,则该元素的余弦值为负数的概率为(  )
A.$\frac{7}{15}$B.$\frac{1}{2}$C.$\frac{8}{15}$D.$\frac{7}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}满足an+1=an-an-1(n≥2),a1=m,a2=n,Sn为数列{an}的前n项和,则S2017的值为(  )
A.2017n-mB.n-2017mC.mD.n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知角α终边上一点P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$的值.
(2)设k为整数,化简$\frac{sin(kπ-α)cos[(k+1)π-α]}{sin[(k-1)π+α]cos(kπ+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面结论正确的是(  )
①一个数列的前三项是1,2,3,那么这个数列的通项公式是an=n(n∈N*).
②由平面三角形的性质推测空间四面体的性质,这是一种合情推理.
③在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.
④“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线y2=20x的焦点F恰好为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点,且点F到双曲线的渐近线的距离是4,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{41}$$-\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{21}$$-\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{3}$$-\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若α∈($\frac{π}{2}$,π),则3cos2α=cos($\frac{π}{4}$+α),则sin2α的值为(  )
A.$\frac{1}{18}$B.-$\frac{1}{18}$C.$\frac{17}{18}$D.-$\frac{17}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.f(x)是定义在(0,+∞)上的单调函数,且对?x∈(0,+∞)都有f(f(x)-lnx)=e+1,则方程f(x)-f′(x)=e的实数解所在的区间是(  )
A.(0,$\frac{1}{e}$)B.($\frac{1}{e}$,1)C.(1,e)D.(e,4)

查看答案和解析>>

同步练习册答案