精英家教网 > 高中数学 > 题目详情
1.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{2\sqrt{5}}{5}t}\\{y=1+\frac{\sqrt{5}}{5}t}\end{array}\right.$(l为参数),直线l与抛物线y2=4x相交于A,B两点.则线段AB的长为4$\sqrt{10}$.

分析 将直线参数方程代入抛物线方程,求出参数的两根之和与两根之积,根据参数的几何意义求出|AB|.

解答 解:将直线l的参数方程代入抛物线方程得1+$\frac{2\sqrt{5}}{5}t$+$\frac{1}{5}{t}^{2}$=$\frac{8\sqrt{5}}{5}t$,
即t2-6$\sqrt{5}$t+5=0,∴t1+t2=6$\sqrt{5}$,t1t2=5.
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{160}$=4$\sqrt{10}$.
故答案为:4$\sqrt{10}$.

点评 本题考查了直线参数方程的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知复数Z1=2-3i,Z2=$\frac{15-5i}{{{{({2+i})}^2}}}$
求(1)|Z2|
(2)Z1•Z2
(3)$\frac{{Z}_{1}}{{Z}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,如果输入的x、y∈R,那么输出的S的最大值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ≤2π)的部分图象如图所示,则(  )
A.ω=$\frac{π}{2}$,φ=$\frac{π}{4}$B.ω=$\frac{π}{3}$,φ=$\frac{π}{6}$C.ω=$\frac{π}{4}$,φ=$\frac{π}{4}$D.ω=$\frac{π}{4}$,φ=$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于参数方程为$\left\{\begin{array}{l}{x=1-tcos30°}\\{y=2+tsin30°}\end{array}\right.$和$\left\{\begin{array}{l}{x=1+tcos30°}\\{y=2-tsin30°}\end{array}\right.$的曲线,正确的结论是(  )
A.是倾斜角为30°的平行线B.是倾斜角为30°的同一直线
C.是倾斜角为150°的同一直线D.是过点(1,2)的相交直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(2,-1)
(1)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求$\frac{sinθ-cosθ}{sinθ+cosθ}$的值;
(2)若|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,θ∈(0,$\frac{π}{2}$)求tan2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=$\frac{{2}^{x}-1}{{2}^{x}+1}$的奇偶性为奇函数,函数f(x)=$\frac{2}{{2}^{x}+1}$+1的对称中心为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数x,y满足$\left\{\begin{array}{l}{5x+2y-18≤0}\\{2x-y≥0}\\{x+y-3≥0}\end{array}\right.$,若直线kx-y+1=0经过该可行域,则实数k的最大值是(  )
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.${C}_{4}^{1}$+${C}_{4}^{2}$+${C}_{4}^{3}$+${C}_{4}^{4}$=15.

查看答案和解析>>

同步练习册答案