精英家教网 > 高中数学 > 题目详情
如果复数z=i(-1+i),则(  )
A、|z|=2
B、z的实部为1
C、z的共轭复数为1+i
D、z的虚部为-1
考点:复数的基本概念
专题:数系的扩充和复数
分析:利用复数的运算法则、虚部的定义即可得出.
解答: 解:复数z=i(-1+i)=-i-1,
∴复数z的虚部为-1.
故选:D.
点评:本题考查了复数的运算法则、虚部的定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边长分别为a,b,c,B=60°.
(Ⅰ)若a=3,B=
7
,求c的值;
(Ⅱ)若f(A)=sinA(
3
cosA-sinA),求f(A)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=0.3-2b=(
1
2
)0.3
c=(
1
2
)0.2
,则a,b,c的大小关系是(  )
A、a>b>c
B、a>c>b
C、c>b>a
D、b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=lg(x-1)+
4-x
的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}满足a3=5,a10=-9.
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x| y=
x2-4
 },B={y|y=x2-2x}
,则A∩B=(  )
A、{y|-2≤y≤2}
B、{x|x≥-1}
C、{y|-1≤y≤2}
D、{x|x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:

F1,F2是双曲线x2-
y2
3
=1的左右焦点,M(6,6)双曲线外的一点,P为双曲线右支上的一点,求PM+PF2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx在(1,2]上是增函数,g(x)=x-a
x
在(0,1)上是减函数.
(1)求f(x)、g(x)的表达式;
(2)试判断关于x的方程
1
2
f(x)=g(x)+2在(0,+∞)根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD,PA=5,AB=4,AD=3,求直线PC与平面ABCD所成的角.

查看答案和解析>>

同步练习册答案