分析 根据函数f(x)的解析式求出f′(x)和f″(x),令f″(x)=0,求得x的值,由此求得函数f(x)的对称中心,得到f(1-x)+f(x)=2,即可得出.
解答 解:依题意,得:f′(x)=x2-x+3,∴f″(x)=2x-1.
由f″(x)=0,即2x-1=0.
∴x=$\frac{1}{2}$,
∴f($\frac{1}{2}$)=1,
∴f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$的对称中心为($\frac{1}{2}$,1)
∴f(1-x)+f(x)=2,
∴f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+…+f($\frac{2015}{2016}$)=2015,
故答案为:2015.
点评 本题主要考查函数与导数等知识,考查化归与转化的数学思想方法,考查化简计算能力,函数的对称性的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{4}$ | B. | $-\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com