精英家教网 > 高中数学 > 题目详情
17.计算log2.56.25+ln$\sqrt{e}-(0.064)^{-\frac{1}{3}}$=0.

分析 根据对数的运算性质和指数幂的运算性质计算即可.

解答 解:log2.56.25+ln$\sqrt{e}-(0.064)^{-\frac{1}{3}}$=log2.52.52+ln${e}^{\frac{1}{2}}$-$(0,4)^{3×(-\frac{1}{3})}$=2+$\frac{1}{2}$-$\frac{5}{2}$=0,
故答案为:0.

点评 本题考查了对数的运算性质和指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数y=2sinxcosx+$\sqrt{3}$(cos2x-sin2x)
(1)求该函数的最小正周期、最大值和最小值;
(2)求该函数的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题p:“?x∈[-1,2],使得不等式x2-2x-m<0成立”,命题q:“方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{m+3}$=1表示的曲线为双曲线”,若p∨q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是(  )
A.相切B.相交但直线不过圆心
C.相交且过圆心D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.sin420°=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:f′(x)是函数f(x)的导函数,f″(x)是f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,根据这一发现,可求得f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+…+f($\frac{2015}{2016}$)=2015.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法数为(  )
A.48种B.16种C.24种D.13种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\sqrt{3-2x-{x}^{2}}$的定义域为[-3,1],值域为[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在公比为q=2的等比数列{an}中,Sn是其前n项和,若am=2,Sn=$\frac{255}{64}$,则m=8.

查看答案和解析>>

同步练习册答案