精英家教网 > 高中数学 > 题目详情
14.已知函数y=2sinxcosx+$\sqrt{3}$(cos2x-sin2x)
(1)求该函数的最小正周期、最大值和最小值;
(2)求该函数的增区间.

分析 (1)由三角函数中的恒等变换应用化简函数解析式可得y=2sin(2x+$\frac{π}{3}$),由正弦函数的性质可求函数的最小正周期、最大值和最小值;
(2)由2kπ$-\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z可解得函数的增区间.

解答 解:(1)∵y=2sinxcosx+$\sqrt{3}$(cos2x-sin2x)
=sin2x+$\sqrt{3}$cos2x
=2sin(2x+$\frac{π}{3}$),
∴函数的最小正周期T=$\frac{2π}{2}$=π,ymax=2,ymin=-2.
(2)由2kπ$-\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z可解得函数的增区间为:[k$π-\frac{5π}{12}$,k$π+\frac{π}{12}$],k∈Z.

点评 本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.由曲线y=$\sqrt{2x}$,直线y=x-4以及x轴所围成的图形绕x轴旋转一周所得旋转体的体积为$\frac{128π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对于任意a,b∈R,存在λ∈R,使a2+mb2>λb(a+b)成立,则实数m的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.方程ax+b=0,当a,b满足什么条件时,解集为有限集,满足什么条件时,解集为无限集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设有编号为①,②,③,④,⑤的5个球和编号分别为1,2,3,4,5的5个盒子,现将这5个球放入这5个盒子内,要求每个盒内放1个球,并且盒子的编号与球的编号均不相同,则放球方法共有(  )种.
A.46B.44C.33D.45

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个单摆如图所示,角(弧度)从竖直开始移动作为时间(秒)的函数满足f(x)=$\frac{1}{2}$sin(2t+$\frac{π}{2}$).求:多长时间单摆完成5次完整摆动?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a>0,且a≠1,f(x)=logax,数列{an}是首项、公比均为a2的等比数列,bn=f(an).
(1)求证:数列{bn}是等差数列;
(2)设a=$\sqrt{2}$,cn=bn•an,试求数列{cn}前n项和Sn
(3)令dn=an•lgan,是否存在实数a∈(0,1),使得数列{dn}为递增数列.若存在,求出实数a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z满足iz=1+i,则z的虚部为(  )
A.1B.iC.-1D.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.计算log2.56.25+ln$\sqrt{e}-(0.064)^{-\frac{1}{3}}$=0.

查看答案和解析>>

同步练习册答案