精英家教网 > 高中数学 > 题目详情
5.对于任意a,b∈R,存在λ∈R,使a2+mb2>λb(a+b)成立,则实数m的取值范围是[-1,+∞).

分析 由已知可得a2-λba-(λ-m)b2≥0,结合二次不等式的性质可得△=λ2+4(λ-m)=λ2+4λ-4m≤0,又存在λ∈R成立,△≥0可求

解答 解:∵a2+mb2≥λb(a+b)对于任意的a,b∈R恒成
∴a2+mb2-λb(a+b)≥0对于任意的a,b∈R恒成
即a2-(λb)a+(m-λ)b2≥0恒成立,
由二次不等式的性质可得,△=λ2+4(λ-m)=λ2+4λ-4m≤0
又∵存在λ∈R使得上述不等式恒成立,
∴△=16+16m≥0,解得m≥-1,
故答案为:[-1,+∞).

点评 本题主要考查了二次不等式的恒成立问题的求解,解题的关键是灵活利用二次函数的性质,本题难在对“存在λ∈R成立“的处理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数y=${2}^{\sqrt{x-2}}$-log3(5-x)的值域为[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解关于x的不等式:$\frac{1-3x}{x-5}$≥-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆的参数方程:$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=-1+2sinθ}\end{array}\right.$(θ是参数).
(1)求圆的圆心坐标和半径;
(2)设圆上的动点P(x,y),求z=x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=|x+1|+|x-1|+$\sqrt{4-{x}^{2}}$的值域[2+$\sqrt{3}$,2$\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.命题“x≥0,y≥0,则xy≥0”的逆否命题是xy<0,则x<0或y<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}满足:a1=1,an+1=$\frac{{n}^{2}{a}_{n}+{{a}_{n}}^{2}}{{{a}_{n}}^{2}+2{a}_{n}-n}+1$,n∈N*
(1)写出a2,a3,a4,猜想通项公式an,用数学归纳法证明你的猜想;
(2)求证:$\sqrt{{{a}_{1}a}_{2}}$+$\sqrt{{a}_{2}{a}_{3}}$+…+$\sqrt{{a}_{n}{a}_{n+1}}$<$\frac{1}{2}$(an+1)2,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数y=2sinxcosx+$\sqrt{3}$(cos2x-sin2x)
(1)求该函数的最小正周期、最大值和最小值;
(2)求该函数的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题p:“?x∈[-1,2],使得不等式x2-2x-m<0成立”,命题q:“方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{m+3}$=1表示的曲线为双曲线”,若p∨q为假,求实数m的取值范围.

查看答案和解析>>

同步练习册答案