精英家教网 > 高中数学 > 题目详情
15.函数y=${2}^{\sqrt{x-2}}$-log3(5-x)的值域为[0,+∞).

分析 根据函数的解析式求出定义域,再根据单调性求得它的值域.

解答 解:由函数y=${2}^{\sqrt{x-2}}$-log3(5-x),可得2≤x<5,故函数的定义域为[2,5),
且函数在它的定义域内单调递增,故当x=2时,函数取得最小值为20-1=0,
当x趋于5时,函数值趋于+∞,故函数的值域为[0,+∞),
故答案为:[0,+∞).

点评 本题主要考查函数的定义域和单调性的应用,求函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知复数z=a+i(i是虚数单位)是纯虚数,则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设M={1,2,3,4,5,6,7,8,9,10},若方程x2-ax-b=0满足a,b∈M且方程至少有一根c∈M,则称该方程为“气质方程”,则“气质方程”的个数为(  )
A.3B.9C.12D.21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知M、N分别是任意两条线段AB和CD的中点,求证:$\overrightarrow{MN}$=$\frac{1}{2}$($\overrightarrow{AD}$+$\overrightarrow{BC}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.我们平时会遇到许多与概率有关的游戏问题,清看下面的游戏,如图所示,从“开始”处出发,每次掷出两颗骰子,两颗骰子点数之和即为出发的格数.
(1)在第一轮到达“车站”的概率是$\frac{1}{9}$;
(2)假设你想要自起点出发去最下边的后半段区域(即电信大楼、日报社或体育馆),则到达这一区域的概率是$\frac{7}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.${∫}_{1}^{{e}^{2}}$$\frac{3}{x}$dx=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=$\frac{2\sqrt{2}}{3}$,AB=3$\sqrt{2}$,AD=3,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.由曲线y=$\sqrt{2x}$,直线y=x-4以及x轴所围成的图形绕x轴旋转一周所得旋转体的体积为$\frac{128π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对于任意a,b∈R,存在λ∈R,使a2+mb2>λb(a+b)成立,则实数m的取值范围是[-1,+∞).

查看答案和解析>>

同步练习册答案