精英家教网 > 高中数学 > 题目详情
3.已知M、N分别是任意两条线段AB和CD的中点,求证:$\overrightarrow{MN}$=$\frac{1}{2}$($\overrightarrow{AD}$+$\overrightarrow{BC}$)

分析 根据向量的三角形法则以及相反向量的和为0向量证明.

解答 证明:因为M、N分别是任意两条线段AB和CD的中点,
所以$\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}$,$\overrightarrow{NC}+\overrightarrow{ND}=\overrightarrow{0}$,
又$\overrightarrow{MN}=\overrightarrow{MB}+\overrightarrow{BC}+\overrightarrow{CN}$①
$\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AD}+\overrightarrow{DN}$②
①+②得2$\overrightarrow{MN}=\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{BC}+\overrightarrow{AD}+\overrightarrow{CN}+\overrightarrow{DN}$=$\overrightarrow{BC}+\overrightarrow{AD}$,
所以:$\overrightarrow{MN}$=$\frac{1}{2}$($\overrightarrow{AD}$+$\overrightarrow{BC}$).

点评 本题考查了向量的三角形法则以及相反向量的和为0向量;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知cosx=a0+a1x+a2x2+…+anxn+….有个同学用以下方法求a0,a1,a2,令x=0,得a0=1;由(cosx)'=-sinx=a1+2a2x+…+nanxn-1+…,令x=0,得a1=0,由(cosx)''=-cosx=2a2+2•3a3x+…+(n-1)nanxn-2+…,令x=0,得a2=-$\frac{1}{2}$,依此类推,我们可得a2n=$\frac{(-1)^{n}}{(2n)!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.以下说法正确的是(  )
A.零向量没有方向B.单位向量都相等
C.共线向量又叫平行向量D.任何向量的模都是正实数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知角α,β均为锐角,且cosα=$\frac{3}{5}$,tan(α-β)=-$\frac{1}{3}$,tanβ=(  )
A.$\frac{1}{3}$B.$\frac{9}{13}$C.$\frac{13}{9}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知复数z1=1+2i,z2=-2+i,$\overline{{z}_{3}}$=$\frac{3{z}_{1}}{|{z}_{1}{|}^{2}}$+$\frac{4{z}_{2}}{|{z}_{2}{|}^{2}}$.
(1)求z3
(2)若复数z满足z+z1为实数,且z(z2-z3)为纯虚数,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.两对夫妻各带一个孩子出去游玩,要站成一排照相留念,两个小孩要排在一起,两位母亲不能相邻,排法总数共有144种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=${2}^{\sqrt{x-2}}$-log3(5-x)的值域为[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)设x,y,z∈R,且满足:x2+y2+z2=1,x+2y+3z=$\sqrt{14}$,求x+y+z的值;
(2)设不等式|x-2|<a(a∈N*)的解集为A,且$\frac{3}{2}$∈A,$\frac{1}{2}$∉A.求函数f(x)=|x+a|+|x-2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆的参数方程:$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=-1+2sinθ}\end{array}\right.$(θ是参数).
(1)求圆的圆心坐标和半径;
(2)设圆上的动点P(x,y),求z=x+y的最大值.

查看答案和解析>>

同步练习册答案