精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,求平面A1DC1与平面ADD1A1所成角的正切值.
考点:与二面角有关的立体几何综合题
专题:计算题,空间角
分析:连接AD1,AD1∩A1D=O,连接C1O,可得∠C1OD1为平面A1DC1与平面ADD1A1所成角的平面角,从而可求平面A1DC1与平面ADD1A1所成角的正切值.
解答: 解:连接AD1,AD1∩A1D=O,则AD1⊥A1D,
连接C1O,则C1O⊥A1D,
∴∠C1OD1为平面A1DC1与平面ADD1A1所成角的平面角,
设正方体的棱长为2,则OD1=
2

∴tan∠C1OD1=
C1D1
OD1
=
2
2
=
2
点评:本题考查面面角,考查学生的计算能力,正确作出面面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,(a,b,c∈R)的最小值为-1,且关于x的一元二次不等式ax2+bx+c>0的解集为(-∞,-2)∪(0,+∞).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设F(x)=tf(x)-x-3其中t≥0,求函数F(x)在x∈[-
3
2
,2]
时的最大值H(t)
(Ⅲ)若g(x)=f(x)+k(k为实数),对任意m∈[0,+∞),总存在n∈[0,+∞)使得g(m)=H(n)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a
x

(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式|x|<1成立,则不等式[x-(a+1)][x-(a+4)]<0也成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为2的菱形ABCD中,∠ABC=60°,点E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.

(1)求证:A′D⊥EF;
(2)求二面角A′-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在平面直角坐标系中,拋物线y=ax2+c与x轴正半轴交于点F(4,0)、与y轴正半轴交于点E(0,4),边长为4的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合;
(1)求拋物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线与边AB交于点P且同时与边CD交于点Q.设点A的坐标为(m,n)
①当PO=PF时,分别求出点P和点Q的坐标及PF所在直线l的函数解析式;
②当n=2时,若P为AB边中点,请求出m的值;
(3)若点B在第(2)①中的PF所在直线l上运动,且正方形ABCD与抛物线有两个交点,请直接写出m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AD=1,AA1=AB=2.点E是线段AB上的动点,点M为D1C的中点.
(1)当E点是AB中点时,求证:直线ME∥平面ADD1A1
(2)若二面角A-D1E-C的余弦值为
4
5
15
.求线段AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠ABC=
π
4
,PA⊥底面ABCD,PA=2,M为PA的中点,N为BC的中点.AF⊥CD于F,如图建立空间直角坐标系.
(Ⅰ)求出平面PCD的一个法向量并证明MN∥平面PCD;
(Ⅱ)求二面角P-CD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一弹簧在弹性限度内,拉伸弹簧所用的力与弹簧伸长的长度成正比.如果20N的力能使弹簧伸长3cm,则把弹簧从平衡位置拉长6cm(在弹性限度内)时所做的功为
 
.(单位:焦耳)

查看答案和解析>>

同步练习册答案