精英家教网 > 高中数学 > 题目详情
6.已知三棱锥 S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,∠BAC=60°,则球O的体积为(  )
A.B.$\frac{32}{3}π$C.$\frac{16}{3}π$D.12π

分析 由三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,∠BAC=60°,知BC=$\sqrt{3}$,∠ABC=90°.故△ABC截球O所得的圆O′的半径r=$\frac{1}{2}$AC=1,由此能求出球O的半径,从而能求出球O的体积.

解答 解:如图,三棱锥S-ABC的所有顶点都在球O的球面上,
∵SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,∠BAC=60°,
∴BC=$\sqrt{1+4-2×1×2×cos60°}$=$\sqrt{3}$,
∴∠ABC=90°.
∴△ABC截球O所得的圆O′的半径r=$\frac{1}{2}$AC=1,
∴球O的半径R=$\sqrt{1+(\frac{2\sqrt{3}}{2})^{2}}$=2,
∴球O的体积V=$\frac{4}{3}$πR3=$\frac{32}{3}$π.
故选:B.

点评 本题考查球的体积的求法,合理地作出图形,数形结合求出球半径,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知关于x的不等式x2-4ax+3a2<0(a>0)的解集为(x1,x2),则${x_1}+{x_2}+\frac{a}{{{x_1}{x_2}}}$的最小值是(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$-\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在?ABCD中,M,N分别为AB,AD上的点,且$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{2}{3}$$\overrightarrow{AD}$,连接AC,MN交于P点,若$\overrightarrow{AP}$=λ$\overrightarrow{AC}$,则λ的值为(  )
A.$\frac{3}{5}$B.$\frac{3}{7}$C.$\frac{6}{13}$D.$\frac{6}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数 f(x)=log2(1+x)-log2(1-x).
(1)求 f(x)的定义域;
(2)判断 f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)计算:${({5\frac{1}{16}})^{0.5}}-2×{({2\frac{10}{27}})^{-\frac{2}{3}}}-2×{({\sqrt{2+π}})^0}÷{({\frac{3}{4}})^{-2}}$;
(2)计算:log535+2log0.5$\sqrt{2}$-log5$\frac{1}{50}$-log514+5${\;}^{lo{g}_{5}3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=\frac{1}{{\sqrt{4-x}}}$的定义域是(  )
A.(-∞,4)B.(-∞,4]C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知二次函数f(x)的二次项系数为a,且f(x)>-x的解集为{x|1<x<2},方程f(x)+2a=0有两相等实根,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,则f(2016)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设动点P在y轴与直线l:x=8之间的区域(含边界)上运动,且到点F(2,0)和直线l的距离之和为10,设动点P的轨迹为曲线C,过点S(2,4)作两条直线SA、SB分别交曲线C于A、B两点,斜率分别为k1、k2
(1)求曲线C的方程;
(2)若k1•k2=1,求证:直线AB恒过定点.

查看答案和解析>>

同步练习册答案