精英家教网 > 高中数学 > 题目详情
8.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+3y-3≤0}\\{x-y+1≥0}\\{y≥-1}\end{array}\right.$,则z=2x+y+1的最大值为12.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.

解答 解:作出不等式组$\left\{\begin{array}{l}{x+3y-3≤0}\\{x-y+1≥0}\\{y≥-1}\end{array}\right.$,对应的平面区域如图:(阴影部分)
由z=2x+y+1得y=-2x+z-1,
平移直线y=-2x+z-1,
由图象可知当直线y=-2x+z-1经过点A时,直线y=-2x+z-1的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{y=-1}\\{x+3y-3=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=6}\\{y=-1}\end{array}\right.$,即A(6,-1),
代入目标函数z=2x+y+1得z=2×6-1+1=12.
即目标函数z=2x+y+1的最大值为12.
故答案为:12.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.一群人中,37.5%的人为A型血,20.9%的人为B型血,33.7%的人为O型血,7.9%的人为AB型血,已知能允许输血的血型配对如下表,现在这群人中任选1人为输血者,再选1人为受血者,问:输血能成功的概率是多少?(注:“+”表示允许输血,“/”表示不允许输血)
 输血者/受血者 A型 B型 AB型 O型
 A型+//+
 B型/+/+
 AB型++++
 O型///+

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sinωx-2$\sqrt{3}$sin2$\frac{ωx}{2}$+$\sqrt{3}$(ω>0),其图象与x轴的相邻两个交点的距离为$\frac{π}{2}$,则f(x)在区间[0,$\frac{π}{2}$]上的最小值为(  )
A.-2B.2C.-$\sqrt{3}$D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}中,对任意的n∈N*若满足an+an+1+an+2+an+3=s(s为常数),则称该数列为4阶等和数列,其中s为4阶公和;若满足an•an+1•an+2=t(t为常数),则称该数列为3阶等积数列,其中t为3阶公积.已知数列{pn}为首项为1的4阶等和数列,且满足$\frac{p_4}{p_3}=\frac{p_3}{p_2}=\frac{p_2}{p_1}=2$;数列{qn}为公积为1的3阶等积数列,且q1=q2=-1,设Sn为数列{pn•qn}的前n项和,则S2016=-2520.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=tant}\\{y=1+ktant}\end{array}\right.$(t为参数,t≠nπ+$\frac{π}{2}$,n∈Z),以O为原点,Ox轴为极轴,单位长度不变,建立极坐标系,曲线C的极坐标方程为ρ=ρcos2θ+4cosθ.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l和曲线C相切,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知平面向量$\overrightarrow{a}$=(-$\sqrt{3}$,m),$\overrightarrow{b}$=(2,1)且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数m的值为(  )
A.$-2\sqrt{3}$B.$2\sqrt{3}$C.$4\sqrt{3}$D.$6\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知全集U=R,集合A={x|lgx≥0},$B=\left\{{x\left|{{2^x}≥\sqrt{2}}\right.}\right\}$,则A∩B为(  )
A.{x|x≥1}B.$\left\{{x\left|{x≥\frac{1}{2}}\right.}\right\}$C.{x|0<x≤1}D.$\left\{{x\left|{0<x≤\frac{1}{2}}\right.}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=mex-x-1.(其中e为自然对数的底数)
(1)若曲线y=f(x)过点P(0,1),求曲线y=f(x)在点P(0,1)处的切线方程.
(2)若f(x)的两个零点为x1,x2且x1<x2,求y=(e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$)($\frac{1}{{e}^{{x}_{2}}+{e}^{{x}_{1}}}$-m)的值域.
(3)若f(x)>0恒成立,试比较em-1与me-1的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=sin(2ωx+$\frac{π}{3}$)(ω>0)下的最小正周期为π,则函数的图象(  )
A.关于直线x=$\frac{13π}{12}$对称B.关于点(-$\frac{π}{12}$,0)对称
C.关于直线x=-$\frac{7π}{12}$对称D.关于点($\frac{π}{4}$,0)对称

查看答案和解析>>

同步练习册答案