| A. | 直角三角形 | B. | 等腰三角形 | C. | 等腰直角三角形 | D. | 等边三角形 |
分析 由已知可得($\overrightarrow{DB}$-$\overrightarrow{DA}$+$\overrightarrow{DC}$-$\overrightarrow{DA}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,可得($\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,进而得解.
解答 解:∵($\overrightarrow{DB}$$+\overrightarrow{DC}$$-2\overrightarrow{DA}$)$•\overrightarrow{CB}$=0,
∴($\overrightarrow{DB}$-$\overrightarrow{DA}$+$\overrightarrow{DC}$-$\overrightarrow{DA}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,
∴($\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,
∴AB2-AC2=0,即|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|.
△ABC的形状是等腰三角形,
故选:B.
点评 本题主要考查了向量的加法、减法的三角形法则的应用,向量数量积的运算,考查了转化思想,属于对基础知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A=3,T=$\frac{4π}{3}$,φ=-$\frac{π}{6}$ | B. | A=3,T=$\frac{4π}{3}$,φ=-$\frac{3π}{4}$ | ||
| C. | A=1,$T=\frac{4π}{3},φ=-\frac{π}{6}$ | D. | A=1,$T=\frac{4π}{3},φ=-\frac{3π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30 | B. | 28 | C. | 5 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com