精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(ax2+bx+c)ex(a>0)的导函数y=f′(x)的两个零点为-3和0.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)的极小值为-1,求f(x)的极大值.
考点:利用导数研究函数的极值,导数的运算,利用导数研究函数的单调性
专题:计算题,导数的综合应用
分析:(Ⅰ)f'(x)=[ax2+(2a+b)x+b+c]ex.令g(x)=ax2+(2a+b)x+b+c,简化运算;
(Ⅱ)由f(x)的极小值为-1确定参数值,通过导数求极大值.
解答: 解:(Ⅰ)f'(x)=(2ax+b)ex+(ax2+bx+c)ex=[ax2+(2a+b)x+b+c]ex
令g(x)=ax2+(2a+b)x+b+c,
∵ex>0,
∴y=f'(x)的零点就是g(x)=ax2+(2a+b)x+b+c的零点,且f'(x)与g(x)符号相同.
又∵a>0,
∴当x<-3,或x>0时,g(x)>0,即f'(x)>0,
当-3<x<0时,g(x)<0,即f'(x)<0,
∴f(x)的单调增区间是(-∞,-3),(0,+∞),单调减区间是(-3,0).
(Ⅱ)由(Ⅰ)知,x=0是f(x)的极小值点,
所以有
c=-1
b+c=0
9a-3(2a+b)+b+c=0

解得a=1,b=1,c=-1.  
所以函数的解析式为f(x)=(x2+x-1)ex
又由(Ⅰ)知,f(x)的单调增区间是(-∞,-3),(0,+∞),单调减区间是(-3,0).
所以,函数f(x)的极大值为f(-3)=(9-3-1)e-3=
5
e3
点评:本题考查了导数的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点C在线段AB上,且
AC
=
3
5
AB
,则
AC
等于(  )
A、
2
3
BC
B、
3
2
BC
C、-
2
3
BC
D、-
3
2
BC

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(n)=(1+
1
n
n-n,其中n为正整数.
(1)求f(1),f(2),f(3)的值;
(2)猜想满足不等式f(n)<0的正整数n的范围,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

若0<a<b<1,比较a+b,2
ab
,2ab的大小,并按从小到大的顺序排列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|1<x≤4,x∈N},请写出集合A的所有子集和真子集.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:P0eln0.81=81%P0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x丨x2-ax+a2-19=0},B={x丨x2-5x+6=0},C={x丨x2+2x-8=0},若∅?(A∩B)与A∩C=∅同时成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,其前n项和Sn满足Sn+1-Sn=2n+1(n∈N+).
(1)求数列{an}的通项公式an以及前n和Sn
(2)令bn=2log2an+1.求数列{
1
bnbn+1
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2,{bn}为等比数列,且a1=b1,b1(a2-a1)=b2
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=
an
2bn
,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案