精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=22x-2x+1+3.
(1)若x∈[-1,2],求f(x)的最大值;
(2)求f(x)在[m,0]的最大值与最小值.

分析 (1)利用22x=(2x2,把看似不识的函数转化为f(x)=h(t)=t2-2t+3=(t-1)2+2.再利用的二次函数求解.
(2)若x∈[m,0],即m≤0时,则t∈[2m,2],结合函数h(t)的图象可知,∴f(x)min=h(1)=2,f(x)max=h(2m)=22m-2 m+1+3.

解答 解:∵f(x)=22x-2•2x+3,令2x=t,所以f(x)=h(t)=t2-2t+3=(t-1)2+2.
(1)若x∈[-1,2],则$t∈[{\frac{1}{2},4}]$,当t=4时,h(t)max=h(4)=11.
(2)若x∈[m,0],即m≤0时,则t∈[2m,1],当0<2m≤1,结合函数h(t)的图象可知,h(t)在[2m,]1上递减,
∴f(x)min=h(1)=2,f(x)max=h(2m)=22m-2 m+1+3.

点评 本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,问题的关键是能否把我们不熟悉的函数转化为我们熟悉的二次函数.而且采用换元法转化函数的时候,一定要注意换元后变量的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.从单词“shadow”中任意选取4个不同的字母排成一排,则其中含有“a”的共有240种排法(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设全集为R,A={x|2≤x<5 }   B={ x|x>4 }  求:
①A∩B       ②A∪B       ③A∩(∁RB)       ④∁RA)∩(∁RB )

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,点A(1,1),点B(3,3),点C在x轴上,当cos∠ACB取得最小值时,点C的坐标为($\sqrt{6}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列有关命题的说法正确的是(  )
A.命题:若x=y,则sinx=siny的逆否命题为真命题
B.x>2是x2-3x+2>0的必要不充分条件
C.命题:若x2=1,则x=1的否命题为“若x2=1,则x≠1”
D.命题:?x∈R使得x2+x+1<0的否定为:?x∈R均有x2+x+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(Ⅰ)函数f(x)满足对任意的实数x,y都有f(xy)=f(x)+f(y),且f(4)=2,求f($\sqrt{2}$)的值;
(Ⅱ)已知函数f(x)是定义在[-1,1]上的奇函数,且f(x)在[-1,1]上递增,求不等式f(x+$\frac{1}{2}$)+f(x-1)<0
的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,三个内角分别是A、B、C,向量$\overrightarrow{a}$=($\frac{\sqrt{5}}{2}$cos$\frac{C}{2}$,cos$\frac{A-B}{2}$),当tanA•tanB=$\frac{1}{9}$时,则|$\overrightarrow{a}$|=$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z满足z(1-i)=|$\sqrt{3}$+i|,则在复平面内z的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将函数$y=sin(x+\frac{π}{3})$的图象向x轴正方向平移$\frac{π}{6}$个单位后,得到的图象解析式是(  )
A.$y=sin(x+\frac{π}{6})$B.$y=sin(x-\frac{π}{6})$C.$y=sin(x-\frac{2π}{3})$D.$y=sin(x+\frac{2π}{3})$

查看答案和解析>>

同步练习册答案