精英家教网 > 高中数学 > 题目详情
5.设Sn是等差数列{an}的前n项和,若$\frac{{a}_{5}}{{a}_{3}}$=$\frac{7}{3}$,则$\frac{{S}_{5}}{{S}_{3}}$=(  )
A.$\frac{7}{3}$B.$\frac{35}{9}$C.4D.5

分析 首先利用等差数列的通项公式求出首相和公差的关系,进一步对等差数列的前n项和公式进行应用.

解答 解:等差数列{an}中,设首相为a1,公差为d,
由于:$\frac{{a}_{5}}{{a}_{3}}=\frac{7}{3}$,
则:$\frac{{a}_{1}+4d}{{a}_{1}+2d}=\frac{7}{3}$,
解得:${a}_{1}=-\frac{d}{2}$,
$\frac{{S}_{5}}{{S}_{3}}=\frac{\frac{5{(a}_{1}+{a}_{5})}{2}}{\frac{3{(a}_{1}+{a}_{3})}{2}}$=$\frac{5{a}_{3}}{3{a}_{2}}=\frac{5•\frac{3d}{2}}{3•\frac{d}{2}}=5$,
故选:D

点评 本题考查的知识要点:等差数列通项公式的应用,等差数列前n项和的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足a1=1,an+1=1-$\frac{1}{4{a}_{n}}$,bn=$\frac{2}{2{a}_{n}-1}$,其中n∈N*
(Ⅰ)求证:数列{bn}是等差数列,并求出数列{an}的通项公式;
(Ⅱ)设cn=$\frac{{4{a_n}}}{n+1}$,数列{cncn+2}的前n项和为Tn,是否存在正整数m,使得Tn<$\frac{1}{{{c_m}{c_{m+1}}}}$对于n∈N*恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.负项等比数列{an}的首项是a1,公比为q(q≠1),前n项和为Sn,且5S2=4S4,且bn=q+Sn,若数列{bn}成等比数列,则当Tn=2qbn2+a1bn+1取得最小值时n的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知两点A(-2,-1),B(-1,2),若直线l过点P(0,1),且与线段AB有公共点,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Asin(ωx+4φ)(A>0,ω>0,0<φ<$\frac{π}{8}$)的部分图象如图所示,若将函数f(x)的图象纵坐标不变,横坐标缩短到原来的$\frac{1}{4}$,再向右平移$\frac{π}{6}$个单位,所得到的函数g(x)的解析式为(  )
A.g(x)=2sinxB.g(x)=2sin2xC.g(x)=2sin$\frac{1}{4}$xD.g(x)=2sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在区间(0,4)内任取两个实数,如果每个实数被取到的概率相等,那么取出的两个实数的和大于2 的概率等于$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出下列几个命题:
①设a=lge,b=(lge)2,c=lg$\sqrt{e}$,则b<c<a;
②“0<a≤$\frac{1}{5}$”是“函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数”的充分必要条件;
③已知平面向量α,β(α≠0,α≠β),满足|β|=1,且α与β-α的夹角为120°,则|α|的取值范围是(0,$\frac{2\sqrt{3}}{3}$];
④在三角形ABC中,∠A,∠B,∠C所对的边长分别为a,b,c其外接圆的半径R=$\frac{5\sqrt{6}}{36}$,则(a2+b2+c2)($\frac{1}{si{n}^{2}A}$$+\frac{1}{si{n}^{2}B}$$+\frac{1}{si{n}^{2}C}$)的最小值为$\frac{25}{6}$.
其中正确命题为①④(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在四面体P-ABC中,PA=PB=PC=1,∠APB=∠BPC=∠CPA=90°,则该四面体P-ABC的外接球的表面积为(  )
A.πB.$\sqrt{3}$πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=x(1-ax)2的导数为y′=1-4ax+3a2x2

查看答案和解析>>

同步练习册答案