精英家教网 > 高中数学 > 题目详情
18.下表是某位理科学生连续5次月考的物理、数学的成绩,结果如下:
次数12345
物理(x分)9085746863
数学(y分)1301251109590
(Ⅰ)求该生5次月考物理成绩的平均分和方差;
(Ⅱ)一般来说,学生的数学成绩与物理成绩有较强的线性相关关系,根据上表提供的数据,求两个变量x,y的线性回归方程.(小数点后保留一位有效数字)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\overline{x}$,$\overline{y}$表示样本均值
参考数据:902+852+742+682+632=29394,
90×130×85×125×74×110×68×95+63×90=42595.

分析 (Ⅰ)利用定义计算月考物理成绩的平均分和方差;
(Ⅱ)计算$\overline{y}$,求出回归系数$\widehat{b}$、$\widehat{a}$,即可写出线性回归方程.

解答 解:(Ⅰ)计算月考物理成绩的平均分为
$\overline{x}$=$\frac{1}{5}$×(90+85+74+68+63)=76,
方差为s2=$\frac{1}{5}$×[${{(x}_{1}-\overline{x})}^{2}$+${{(x}_{2}-\overline{x})}^{2}$+…+${{(x}_{5}-\overline{x})}^{2}$]
=$\frac{1}{5}$×[(90-76)2+(85-76)2+…+(63-76)2]
=102.8;
(Ⅱ)计算$\overline{y}$=$\frac{1}{5}$×(130+125+110+95+68+90)=110,
回归系数为$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{42595-5×76×110}{29394-5{×76}^{2}}$≈1.5,
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=110-1.5×76=-4,
所以变量x,y的线性回归方程为$\stackrel{∧}{y}$=1.5x-4.

点评 本题考查了求平均数和方差以及线性回归方程的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如果满足不等式$|{x-\frac{5}{4}}|<b({b>0})$的一切实数x也满足不等式|x-1|<$\frac{1}{2}$,则b的取值范围是(  )
A.$({0,\frac{3}{4}})$B.$({0,\frac{1}{4}}]$C.$[{\frac{1}{4},\frac{3}{4}}]$D.$[{\frac{3}{4},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.将下列角度化为弧度,弧度转化为角度
(1)780°,(2)-1560°,(3)67.5°(4)$-\frac{10}{3}π$,(5)$\frac{π}{12}$,(6)$\frac{7π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足${a_1}=-\frac{1}{2}$,an+1bn=bn+1an+bn,且${b_n}=\frac{{1+{{(-1)}^n}5}}{2}$(n∈N*),则数列{an}的前2n项和S2n取最大值时,n=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.方程sin2πx-$\frac{2}{2x-1}$=0(x∈[-2,3])所有根之和为(  )
A.$\frac{2}{3}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在非直角△ABC中,D为BC上的中点,且$\frac{\overrightarrow{CA}•\overrightarrow{CB}}{{S}_{△CAB}}$=4$\frac{{S}_{△ABD}}{\overrightarrow{AB}•\overrightarrow{AD}}$,E为边AC上一点,2$\overrightarrow{BE}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$,BE=2,则△ABC的面积的最大值为$\frac{8}{3}$.(其中S△ABC表示△ABC的面积)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在等差数列{an}中,已知a4+a7+a10=15,$\sum_{i=4}^{14}$ai=77.若ak=13,则正整数k的值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某位股民购进某只股票,在接下来的交易时间内,他的这只股票先经历了3次涨停(每次上涨10%)又经历了3次跌停(每次下降10%),则该股民这只股票的盈亏情况(不考虑其他费用)为(  )
A.略有盈利B.无法判断盈亏情况
C.没有盈也没有亏损D.略有亏损

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果实数x,y满足约束条件$\left\{\begin{array}{l}{3x+y-6≤0}\\{x-y-2≤0}\\{x≥1}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的最大值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

同步练习册答案