精英家教网 > 高中数学 > 题目详情
19.已知几何体由两个直棱柱组合而成,其三视图和直观图如图所示.设两异面直线A1Q,PD所成的角为θ,则cosθ的值为$\frac{\sqrt{15}}{15}$.

分析 先作出异面直线所成的角的平面角,即连接QC,再证明∠A1QC为异面直线A1Q、PD所成的角(或其补角),最后在△A1QC中计算此角的余弦值即可.

解答 解:这个几何体的直观图如图,
这个几何体可看成是由边长为2的正方体AC1
底面边长为$\sqrt{2}$,$\sqrt{2}$,2,侧棱长为2的直三棱柱B1C1Q1-A1D1P的组合体,
由PQ∥CD,且PQ=CD,可知PD∥QC,
故∠A1QC为异面直线A1Q、PD所成的角(或其补角),
由题设知QA12=A1B12+B1Q2=22+2=6,
CA1=$\sqrt{3}$×2=2$\sqrt{3}$,取BC中点E,则QE⊥BC,
且QE=3,QC2=QE2+EC2=32+12=10,
由余弦定理,得cosθ=cos∠A1QC=$\frac{6+10-12}{2\sqrt{6}•\sqrt{10}}$=$\frac{\sqrt{15}}{15}$.
故答案为:$\frac{\sqrt{15}}{15}$.

点评 本题考查了空间想象能力,由三视图作出几何体的直观图,异面直线所成的角的定义及其求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知棱长为1的正方体ABCD-A1B1C1D1中,P,Q是面对角线A1C1的两个不同的动点.
①存在M,N两点,使BP⊥DQ;
②体对角线BD1垂直平面DPQ;
③若|PQ|=1,S△BPD∈[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$];
④若|PQ|=1,则四面体BDPQ在平面ABCD上的正投影面积为定值;
⑤若|PQ|=1,则四面体BDPQ的体积随着线段PQ移动而变化;
以上命题为真命题的有①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线$l:ρsin(θ-\frac{π}{4})=4$和圆$C:ρ=2k•cos(θ+\frac{π}{4})(k≠0)$,直线上的点到圆C上的点的最小距离等于2
(1)求直线L的直角坐标方程;
(2)求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在极坐标系中,已知两点A(3,$\frac{5π}{3}$),B(1,$\frac{2π}{3}$),则A,B 两点间的距离等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和Sn=n2+2n,正项等比数列{bn}满足:b1=a1-1,且b4=2b2+b3
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{cn}满足:cn=$\frac{{a}_{n}}{{b}_{n}}$,其前n项和为Tn,求Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=ln$\frac{{\sum_{i=1}^{n-1}{{i^x}+{n^x}a}}}{n}$,其中a∈R,对于任意的正整数n(n≥2),如果不等式f(x)>(x-1)lnn在区间[1,+∞)上有解,则实数a的取值范围为{a|a>$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,三棱锥的四个顶点P、A、B、C在同一个球面上,顶点P在平面ABC内的射影是H,若球心在直线PH上,则点H一定是△ABC的(  )
A.重心B.垂心C.内心D.外心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,已知点G是△ABC的重心,过点G作直线与AB,AC两边分别交于M,N两点,且$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,则x+y的最小值为(  )
A.2B.$\frac{1}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.向如图所示的矩形区域内随机投100个点,阴影面积为以下程序框图中的输出的s,当输入的n=10000时,请估算落在阴影区域内的点的个数 (结果四舍五入)为(  )
A.60B.62C.64D.66

查看答案和解析>>

同步练习册答案