精英家教网 > 高中数学 > 题目详情
设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点,若|AF|=3|BF|,则|AB|等于(  )
A、
5
2
B、
16
3
C、3
D、
17
2
考点:抛物线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:根据题意,可得抛物线焦点为F(1,0),由此设直线l方程为y=k(x-1),与抛物线方程联解消去x,设A(x1,y1),B(x2,y2),由根与系数的关系和|AF|=3|BF|,建立关于y1、y2和k的方程组,解之可得k值,即可求出|AB|.
解答: 解:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),
∴设直线l方程为y=k(x-1)
代入抛物线方程消去x,得
k
4
y2-y-k=0

设A(x1,y1),B(x2,y2),
可得y1+y2=
4
k
,y1y2=-4…(*)
∵|AF|=3|BF|,
∴y1+3y2=0,可得y1=-3y2,代入(*)得-2y2=
4
k
且-3y22=-4,
消去y2得k2=3,解之得k=±
3

∴|AB|=
1+
1
3
×
16
3
+16
=
16
3

故选:B.
点评:本题给出抛物线的焦点弦AB被焦点F分成1:3的两部分,求|AB|,着重考查了抛物线的标准方程、简单几何性质和直线与圆锥曲线的位置关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,点A是平面α外一定点,过A作平面α的斜线l,斜线l与平面α所成角为50°.若点P在平面α内运动,并使直线AP与l所成角为35°,则动点P的轨迹是(  )
A、圆B、椭圆
C、抛物线D、双曲线的一支

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F到它的一条渐近线距离x满足a≤x≤3a,则该双曲线的离心率的取值范围为(  )
A、(
2,
+∞)
B、(1,
10
C、[2,
10
D、[
2
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
sin(
1
2
x),为了得到函数g(x)=sin(
1
2
x)+cos(
1
2
x)的图象,只要将y=f(x)的图象(  )
A、向右平移
π
4
个单位长度
B、向左平移
π
4
个单位长度
C、向右平移
π
2
个单位长度
D、向左平移
π
2
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域[-1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示,下列关于函数f(x)的命题其中错误的是(  )
x-10245
f x 121.521
A、函数f(x)的值域为[1,2]
B、函数f(x)在[0,2]上是减函数
C、如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4
D、当1<a<2时,函数y=f(x)-a最多有4个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

锐角三角形ABC中,若A=2B,则下列叙述正确的是(  )
①sin3B=sin2C;  
②tan
3B
2
tan
C
2
=1; 
π
6
<B<
π
4
; 
a
b
∈(
2
3
].
A、①②B、②③C、③④D、④①

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一组变量x与y具有相关关系,对应值如下表:根据上表提供的数据,求出y关于x的线性回归方程为
y
=0.5x+1.25,那么表中t的值是(  )
x3456
y3.5t44.5
A、2B、3C、3.25D、3.5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知log2a+log2b≥1,则3a+9b的最小值为(  )
A、6B、9C、16D、18

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的不等式|x-1|≤a-x.
(1)若a=2,解上述不等式;
(2)若上述的不等式有解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案