精英家教网 > 高中数学 > 题目详情
3.现有12张不同的卡片,其中红色、黄色、绿色、蓝色卡片各3张,从中任取3张,要求这3张卡片不能是同一种颜色,且蓝色卡片至多1张.则不同的取法的共有(  )
A.135B.172C.189D.216

分析 不考虑特殊情况,共有${C}_{12}^{3}$种取法,其中每一种卡片各取三张,有4种取法,两种蓝色卡片,共有${C}_{3}^{2}{C}_{9}^{1}$种取法,
由此可得结论.

解答 解:由题意,不考虑特殊情况,共有${C}_{12}^{3}$种取法,其中每一种卡片各取三张,有4种取法,两种蓝色卡片,共有${C}_{3}^{2}{C}_{9}^{1}$种取法,
故所求的取法共有${C}_{12}^{3}$-4-${C}_{3}^{2}{C}_{9}^{1}$=189种.
故选:C.

点评 本题考查组合知识,考查排除法求解计数问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若an=1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}$.,bn=n,n∈N*,则b1(a2012-a1)+b2(a2012-a2)+b3(a2012-a3)+…+b2011(a2012-a2011)=1011533.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设矩阵A=$(\begin{array}{l}{1}&{2}\\{2}&{3}\end{array})$
①求矩阵A的逆矩阵A-1
②若曲线C在矩阵A-1D的作用下变为曲线C:′x2-y2=1,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且Sn=2an-2.
(1)求数列{an}的通项公式;
(2)设bn=log2a1+log2a2+…+log2an,求(n-8)bn≥nk对任意n∈N*恒成立的实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示:
(I)求频率分布直方图中m的值;
(Ⅱ) 分别求出成绩落在[70,80),[80,90),[90,100]中的学生人数;
(Ⅲ)从成绩在[80,100]的学生中任选2人,求所选学生的成绩都落在[80,90)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,三棱柱ABC-A1B1C1中,平面ABB1A1⊥底面ABC,AB=BC=CA=$\frac{1}{2}A{A_1}$=1,∠A1AB=120°,D、E分别是BC、A1C1的中点.
(Ⅰ)试在棱AB上找一点F,使DE∥平面A1CF;
(Ⅱ)在(Ⅰ)的条件下,求多面体BCF-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐最北面的椅子,B、C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有(  )
A.24种B.30种C.48种D.60种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=log2(x-1),则函数y=f(x)的定义域为(1,+∞),f(3)=1,方程f(x)=0的解x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知sinαcosβ-cosαsinβ=$\frac{1}{3}$,则cos(2α-2β)=$\frac{8}{9}$.

查看答案和解析>>

同步练习册答案