【题目】一个几何体的三视图如图所示,正视图为等腰直角三角形,俯视图中虚线平分矩形的面积,则该几何体的体积为_____,其外接球的表面积为______.
科目:高中数学 来源: 题型:
【题目】已知斜率为1的直线与椭圆交于,两点,且线段的中点为,椭圆的上顶点为.
(1)求椭圆的离心率;
(2)设直线与椭圆交于两点,若直线与的斜率之和为2,证明:过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面是等边三角形,且平面平面,为的中点,,,.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)直线上是否存在点,使得平面?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设为取出的3个球中白色球的个数,求的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于命题的说法错误的是( )
A. 命题“若,则”的逆否命题为“若,则”
B. “”是“函数在区间上为增函数”的充分不必要条件
C. 命题“,使得”的否定是“,均有”
D. “若为的极值点,则”的逆命题为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为抛物线的焦点,点在抛物线上,过点的直线交抛物线于两点,线段的中点为,且满足.
(1)若直线的斜率为1,求点的坐标;
(2)若,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,为坐标原点,椭圆的左,右焦点分别为,离心率为,双曲线的左,右焦点分别为,,离心率为,已知,.
(1)求,的方程;
(2)过作的不垂直于轴的弦,为弦的中点,当直线与交于,两点时,求四边形面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com