精英家教网 > 高中数学 > 题目详情

【题目】一个几何体的三视图如图所示,正视图为等腰直角三角形,俯视图中虚线平分矩形的面积,则该几何体的体积为_____,其外接球的表面积为______

【答案】2

【解析】

根据三视图可知该几何体是底面为等腰直角三角形的直三棱柱,则体积可求,将该三棱柱补成一个长方体,可得出其外接球的表面积.

根据三视图可知该几何体是底面为等腰直角三角形的直三棱柱,画出其直观图,如图.

由三视图中的数据可得,在底面三角形中,底边上的高是1,斜边为2,直角边为.

侧棱长为2,即棱柱的高为2.

所以其体积为:

将该三棱柱补成一个长方体,则该长方体与三棱柱的外接球相同.

该长方体的长、宽、高分别为2.

所以其外接球的直径为该长方体的对角线.

则外接球的半径为,所以其表面积为

故答案为:(1). 2 (2). .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,判断上的单调性并加以证明;

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜率为1的直线与椭圆交于两点,且线段的中点为,椭圆的上顶点为.

(1)求椭圆的离心率;

(2)设直线与椭圆交于两点,若直线的斜率之和为2,证明:过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面是等边三角形,且平面平面的中点,,.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)直线上是否存在点,使得平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1. 现从盒内任取3个球

)求取出的3个球中至少有一个红球的概率;

)求取出的3个球得分之和恰为1分的概率;

)设为取出的3个球中白色球的个数,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于命题的说法错误的是( )

A. 命题“若,则”的逆否命题为“若,则

B. ”是“函数在区间上为增函数”的充分不必要条件

C. 命题“,使得”的否定是“,均有

D. “若的极值点,则”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为抛物线的焦点,点在抛物线上,过点的直线交抛物线两点,线段的中点为,且满足

1)若直线的斜率为1,求点的坐标;

2)若,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)若函数上是单调递增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为坐标原点,椭圆的左,右焦点分别为,离心率为,双曲线的左,右焦点分别为,离心率为,已知

1)求的方程;

2)过的不垂直于轴的弦为弦的中点,当直线交于两点时,求四边形面积的最小值.

查看答案和解析>>

同步练习册答案