【题目】已知函数
.
(1)求函数
的极值;
(2)若函数
在
上是单调递增函数,求实数
的取值范围.
【答案】(1)当
时,
无极值;当
时,
有极小值为
,无极大值
(2)![]()
【解析】
(1)根据解析式求得导函数
,讨论
与
两种情况下导函数的符号,即可由单调性判断函数的极值.
(2)将
的解析式代入可得
,并求得
,根据函数
在
上是单调递增函数可知
,分离参数并构造函数
,求得
,即可判断
在
上的单调性,进而由恒成立问题解法求得
的取值范围即可.
(1)函数
.定义域为
,
则
,
当
时,
,所以
在
上单调递增,无极值.
当
时,令
,解得
,
若
,解得
;
若
,解得
,
所以
在
上单调递减,在
上单调递增,
所以函数
有极小值为
,无极大值.
综上,当
时,
无极值;
当
时,
有极小值为
,无极大值.
(2)
,![]()
因为函数
在
上单调递增,
所以
,化简得
在
上恒成立,
令
,
,
即
在
上单调递减.
又
,所以
.
综上
.
科目:高中数学 来源: 题型:
【题目】一个几何体的三视图如图所示,正视图为等腰直角三角形,俯视图中虚线平分矩形的面积,则该几何体的体积为_____,其外接球的表面积为______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的一个顶点为
,离心率为
.
![]()
(1)求椭圆
的方程;
(2)若直线
与椭园C交于
,
两点,直线
与线
的斜率之积为
,证明:直线
过定点,并求
的面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市环保部门为了让全市居民认识到冬天烧煤取暖对空气
数值的影响,进而唤醒全市人民的环保节能意识。对该市取暖季烧煤天数
与空气
数值不合格的天数
进行统计分析,得出下表数据:
| 9 | 8 | 7 | 5 | 4 |
| 7 | 6 | 5 | 3 | 2 |
(1)以统计数据为依据,求出
关于
的线性回归方程
;
(2)根据(1)求出的线性回归方程,预测该市烧煤取暖的天数为20时空气
数值不合格的天数.
参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知短轴长为2的椭圆
,直线
的横、纵截距分别为
,且原点到直线
的距离为
.
(1)求椭圆
的方程;
(2)直线
经过椭圆的右焦点
且与椭圆
交于
两点,若椭圆
上存在一点
满足
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点
,点
均在圆
上,且
,过点
作
的平行线分别交
,
于
两点.
![]()
(1)求点
的轨迹方程;
(2)过点
的动直线
与点
的轨迹交于
两点.问是否存在常数
,使得
点为定值?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中成功开设大学先修课程已有两年,共有250人参与学习先修课程.
(Ⅰ)这两年学校共培养出优等生150人,根据下图等高条形图,填写相应列联表,并根据列联表检验能否在犯错的概率不超过0.01的前提下认为学习先修课程与优等生有关系?
![]()
优等生 | 非优等生 | 总计 | |
学习大学先修课程 | 250 | ||
没有学习大学先修课程 | |||
总计 | 150 |
(Ⅱ)某班有5名优等生,其中有2名参加了大学生先修课程的学习,在这5名优等生中任选3人进行测试,求这3人中至少有1名参加了大学先修课程学习的概率.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式:
,其中![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com