精英家教网 > 高中数学 > 题目详情
3.求值:${2^{2{{log}_2}3+1}}+({log_{\sqrt{3}}}2-{log_9}8)•{log_2}\sqrt{3}$=$\frac{73}{4}$.

分析 利用对数的运算性质、换底公式即可得出.

解答 解:原式=${2}^{lo{g}_{2}({3}^{2}×2)}$+$lo{g}_{\sqrt{3}}2$$•lo{g}_{2}\sqrt{3}$-$\frac{3}{2lo{g}_{2}3}$$•\frac{1}{2}lo{g}_{2}3$
=18+1-$\frac{3}{4}$
=$\frac{73}{4}$.
故答案为:$\frac{73}{4}$.

点评 本题考查了对数的运算性质、换底公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在△ABC中,内角A、B、C所对的边长分别为a、b、c,asinBcosC=$\frac{1}{2}$b-csinBcosA,且a>b,则B=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求证:函数f(x)=-$\frac{3}{2x}$-1在区间(-∞,0)上是单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点A(x,y)关于直线x+y+c=0的对称点A′的坐标为(-y-c,-x-c),关于直线x-y+c=0的对称点A″的坐标为(y-c,x+c),曲线f(x,y)=0关于直线x+y+c=0的对称曲线为f(-y-c,-x-c)=0,关于直线x-y+c=0的对称曲线为f(y-c,x+c)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,它满足(1)第n行首尾两数均为n,
(2)表中每行由n开始逐渐变大,然后变小,回到n,除每行最左侧与最右侧的数字以外,每个数字等于它的左上方与右上方两个数字之和(也就是说,第n行第k个数字等于第n-1行的第k-1个数字与第k个数字的和).
那么第19行的第2个数比第18行的第2个数大18;第n行(n≥2)第2个数是$\frac{{n}^{2}-n+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个算法的程序框图所图所示,则该程序输出的结果为(  )
A.$\frac{2012}{2013}$B.$\frac{2013}{2014}$C.$\frac{1}{2013}$D.$\frac{1}{2014}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数y=sin2x,则函数的周期为(  )
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若非零数a,b满足3a=2b(a+1),且直线$\frac{2x}{a}$+$\frac{y}{2b}$=1恒过一定点,则定点坐标为(-$\frac{1}{2}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{x^2}{{1+{x^2}}}$.
(1)分别求$f(2)+f(\frac{1}{2}),f(3)+f(\frac{1}{3}),f(4)+f(\frac{1}{4})$的值,并归纳猜想一般性结论(不要求证明);
(2)求值:2f(2)+2f(3)+…+2f(2015)+f$(\frac{1}{2})$+f$(\frac{1}{3})$+…f$(\frac{1}{2015})$+$\frac{1}{2^2}$f(2)+$\frac{1}{3^2}$f(3)+…$\frac{1}{{{{2015}^2}}}$f(2015).

查看答案和解析>>

同步练习册答案