精英家教网 > 高中数学 > 题目详情

【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取名同学(男人),给所有同学几何题和代数题各一题,让各位同学只能自由选择其中一道题进行解答.选题情况如下表(单位:人)

几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50

几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50

1能否据此判断有的把握认为视觉和空间能力与性别有关?

2现从选择做几何题的名女生中任意抽取两人,对她们的答题情况进行全程研究,记甲、乙两位女生被抽到的人数为,求的分布列和.

附表及公式:

【答案】(1)见解析;(2)见解析.

【解析】试题分析:(1)计算K2,对照附表做结论;
(2)使用组合数公式和古典概型的概率计算公式分别计算X取不同值时的概率,得到X的分布列,求出数学期望.

试题解析:

(1)由表中数据得的观测值:

所以根据统计有的把握认为视觉和空间能力与性别有关.

(2)可能取值为

的分布列为:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,圆的方程为

(1)写出直线的普通方程和圆的直角坐标方程;

(2)设点,直线与圆相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定圆,定直线,过的一条动直线与直线相交于,与圆相交于 两点, 中点.

)当垂直时,求证: 过圆心

)当,求直线的方程.

)设,试问是否为定值,若为定值,请求出的值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于各项均为整数的数列,如果满足)为完全平方数,则称数列具有“性质”;不论数列是否具有“性质”,如果存在与不是同一数列的,且同时满足下面两个条件:①的一个排列;②数列具有“性质”,则称数列具有“变换性质”.

(Ⅰ)设数列的前项和,证明数列具有“性质”;

(Ⅱ)试判断数列和数列是否具有“变换性质”,具有此性质的数列请写出相应的数列,不具此性质的说明理由;

(Ⅲ)对于有限项数列,某人已经验证当)时,数列具有“变换性质”,试证明:当时,数列也具有“变换性质”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一次全市高中男生身高统计调查数据显示:全市名男生的身高服从正态分布.现从某学校高三年级男生中随机抽取名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分组: ,…, ,得到的频率分布直方图如图所示.

(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;

(Ⅱ)求这名男生身高在以上(含)的人数;

(Ⅲ)在这名男生身高在以上(含)的人中任意抽取人,该人中身高排名(从高到低)在全市前名的人数记力,求的数学期望.

参考数据:若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查银川市某校高中生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了50人,结果如下:

(1)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人?

(2)在(1)中抽取的6人中任选2人,求恰有一名女生的概率;

(3)你能否在犯错误的概率不超过0.010的前提下,认为该校高中生是否愿意提供志愿者服务与性别有关?

下面的临界值表供参考:

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

独立性检验统计量其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—5:不等式选讲]

已知.

(1)若的解集为,求的值;

(2)若不等式恒成立,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为上的动点到两焦点的距离之和为4,当点运动到椭圆的上顶点时,直线恰与以原点为圆心,以椭圆的离心率为半径的圆相切.

(1)求椭圆的方程;

(2)设椭圆的左右顶点分别为,若交直线两点.问以为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有A和B两个盒子装有大小相同的黄乒乓球和白乒乓球,A盒装有2个黄乒乓球,2个白乒乓球;B盒装有2个黄乒乓球,个白乒乓球. 现从A、B两盒中各任取2个乒乓球.

(1)若,求取到的4个乒乓球全是白的概率;

(2)若取到的4个乒乓球中恰有2个黄的概率为, 求的值.

查看答案和解析>>

同步练习册答案