【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取名同学(男人,女人),给所有同学几何题和代数题各一题,让各位同学只能自由选择其中一道题进行解答.选题情况如下表(单位:人):
几何题 | 代数题 | 总计 | |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
几何题 | 代数题 | 总计 | |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
(1)能否据此判断有的把握认为视觉和空间能力与性别有关?
(2)现从选择做几何题的名女生中,任意抽取两人,对她们的答题情况进行全程研究,记甲、乙两位女生被抽到的人数为,求的分布列和.
附表及公式:
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,圆的方程为.
(1)写出直线的普通方程和圆的直角坐标方程;
(2)设点,直线与圆相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定圆,定直线,过的一条动直线与直线相交于,与圆相交于, 两点, 是中点.
(Ⅰ)当与垂直时,求证: 过圆心.
(Ⅱ)当,求直线的方程.
(Ⅲ)设,试问是否为定值,若为定值,请求出的值;若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于各项均为整数的数列,如果满足()为完全平方数,则称数列具有“性质”;不论数列是否具有“性质”,如果存在与不是同一数列的,且同时满足下面两个条件:①是的一个排列;②数列具有“性质”,则称数列具有“变换性质”.
(Ⅰ)设数列的前项和,证明数列具有“性质”;
(Ⅱ)试判断数列和数列是否具有“变换性质”,具有此性质的数列请写出相应的数列,不具此性质的说明理由;
(Ⅲ)对于有限项数列,某人已经验证当()时,数列具有“变换性质”,试证明:当时,数列也具有“变换性质”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市一次全市高中男生身高统计调查数据显示:全市名男生的身高服从正态分布.现从某学校高三年级男生中随机抽取名测量身高,测量发现被测学生身高全部介于和之间,将测量结果按如下方式分组: , ,…, ,得到的频率分布直方图如图所示.
(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;
(Ⅱ)求这名男生身高在以上(含)的人数;
(Ⅲ)在这名男生身高在以上(含)的人中任意抽取人,该人中身高排名(从高到低)在全市前名的人数记力,求的数学期望.
参考数据:若,则,
, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查银川市某校高中生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了50人,结果如下:
(1)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人?
(2)在(1)中抽取的6人中任选2人,求恰有一名女生的概率;
(3)你能否在犯错误的概率不超过0.010的前提下,认为该校高中生是否愿意提供志愿者服务与性别有关?
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
独立性检验统计量其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为, 上的动点到两焦点的距离之和为4,当点运动到椭圆的上顶点时,直线恰与以原点为圆心,以椭圆的离心率为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为,若交直线于两点.问以为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有A和B两个盒子装有大小相同的黄乒乓球和白乒乓球,A盒装有2个黄乒乓球,2个白乒乓球;B盒装有2个黄乒乓球,个白乒乓球. 现从A、B两盒中各任取2个乒乓球.
(1)若,求取到的4个乒乓球全是白的概率;
(2)若取到的4个乒乓球中恰有2个黄的概率为, 求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com