精英家教网 > 高中数学 > 题目详情
已知向量
m
=(cos(x-
π
6
),0),
n
=(2,0),x∈R,函数f(x)=
m
n

(1)求函数f(x)的表达式;
(2)求f(π)的值;
(3)若f(α+
3
)=
6
5
,α∈(-
π
2
,0),求f(2α)的值.
考点:三角函数中的恒等变换应用,平面向量数量积的运算
专题:三角函数的求值
分析:(1)由条件利用两个向量的数量积公式求得函数f(x)=
m
n
的解析式.
(2)由f(x)的解析式求得f(π)的值.
(3)由f(α+
3
)=
6
5
,求得sinα=-
3
5
,再根据α∈(-
π
2
,0),求得cosα、sin2α、cos2α 的值,再根据 f(2α)=2cos(2α-
π
6
),利用两角差的余弦公式计算求得解果.
解答: 解:(1)∵向量
m
=(cos(x-
π
6
),0),
n
=(2,0),∴函数f(x)=
m
n
=2cos(x-
π
6
).
(2)f(π)=2cos(π-
π
6
)=-2cos
π
6
=-
3

(3)∵f(α+
3
)=2cos(α+
3
-
π
6
)=-2sinα=
6
5
,∴sinα=-
3
5

再根据α∈(-
π
2
,0),∴cosα=
4
5
,∴sin2α=2sinαcosα=-
24
25
,cos2α=2cos2α-1=
7
25

∴f(2α)=2cos(2α-
π
6
)=2cos2αcos
π
6
+2sin2αsin
π
6

=2×
7
25
×
3
2
+2×(-
24
25
)×
1
2
=
7
3
-24
25
点评:本题主要考查两个向量的数量积公式,两角和差的三角公式、二倍角公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A、B、C的坐标分别是(4,0)、(0,4)、(3cosα,3sinα),且α∈(
π
2
4
).若
AC
BC
,求
2sin2α+sin2α
1-tanα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A=
1a
-1b
,A的一个特征值λ=2,其对应的特征向量是
a1
=
2
1

(Ⅰ)求矩阵A;
(Ⅱ)若向量
β
=
7
4
,计算A4
β
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn=2an-2,bn=3lnn+2,函数f(x)=lnx-x+1.
(1)求a1的值和数列{an}的通项公式;
(2)证明:当x≥1时,f(x)≤0;
(3)求证:
b1
a1
+
b2
a2
+
b3
a3
+…+
bn
an
<5.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程是
x=1-
2
2
t
y=2+
2
2
t
(t为参数).
(1)若圆C的极坐标方程为ρ2-2ρcosθ-15=0,求直线l被圆C所截得的弦长;
(2)若矩阵M=
21
1a
的一个特征值是3,求直线l在M对应的变换作用下的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程
y
=3-5x,变量x增加一个单位时,y平均增加5个单位;
③曲线上的点与该点的坐标之间具有相关关系;
④在一个2×2的列联表中,由计算得K2=13.079,则没有证据显示两个变量间有关系.
其中错误的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是5的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知扇形的半径为1.5,扇形圆心角的弧度数是2,则扇形的周长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设F是抛物线C1:y2=2pr(p>0)的焦点,点A是抛物线C1与双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线的一个公共点,且AF⊥x轴,则双曲线的离心率为
 

查看答案和解析>>

同步练习册答案