精英家教网 > 高中数学 > 题目详情
13.[B]已知数列{an}的前n项和为Sn,且满足2Sn=4an+(n-4)(n+1)(n∈N+).
(1)计算a1,a2,a3,根据计算结果,猜想an的表达式(不必证明);
(2)用数学归纳法证明你的结论.

分析 (1)由2Sn=4an+(n-4)(n+1),可求得a1,a2,a3的值,从而可猜想{an}的一个通项公式.
(2)按照数学归纳法的证题步骤:先证明n=1时命题成立,再假设当n=k时结论成立,去证明当n=k+1时,结论也成立,从而得出命题an=2n+n对任意的正整数n恒成立.

解答 解:(1)当n=1时,2S1=4a1-6,解得a1=3,
当n=2时,2(a1+a2)=4a2-6,解得a2=6,
当n=2时,2(a1+a2+a3)=4a3-4,解得a3=11,
由此猜想an=2n+n,(n∈N+).
下面用数学归纳法证明:an=2n+n,(n∈N+).
①当n=1时,显然成立,
②假设n=k时成立,即ak=2k+k,
那么当n=k+1时,
∵2ak+1=2Sk+1-2Sk=[4ak+1+(k-3)(k+2)]-[4ak+(k-4)(k+1),
∴ak+1=2ak-k+1=2×2k+2k-k+1=2k+1+k+1,
所以当n=k+1时,猜想成立,
由①②可知,猜想成立,即an=2n+n.(n∈N+).

点评 本题考查数学归纳法,考查推理证明的能力,假设n=k(k∈N*)时命题成立,去证明则当n=k+1时,用上归纳假设是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.求函数y=$\frac{{x}^{2}+6x+1}{{x}^{2}+1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线系y=2x+b、圆x2+y2=2直线线系中的直线与圆的交点A、B,试用b为参数表示AB的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.袋中有大小完全相同的2个红球和3个黑球,不放回地摸出两球,设“第一次摸出红球”为事件A,“摸得的两球同色”为事件B,则概率P(B|A)为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知1,2,…,n满足下列性质T的排列a1,a2,…,an的个数为f(n)(n≥2)排列a1,a2,…,an中有且只有一个ai>ai+1(i∈{1,2,…,n-1})
(1)求f(3)=4;f(4)=11;f(5)=26
(2)求f(n)的表达式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在三棱ABC-A′B′C′中,侧棱AA′⊥底面ABC,AC⊥AB,AB=2,AC=AA′=3,
(Ⅰ)若F为线段B′C上一点,且$\frac{CF}{FB′}$=$\frac{9}{4}$,求证:BC⊥平面AA′F;
(Ⅱ)若E,F分别是线段BB′,B′C的中点,设平面A′EF将三棱柱分割成左右两部分,记它们的体积分别为V1和V2,求V1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在极坐标系中.点A(1,$\frac{π}{3}$),B(2,$\frac{π}{3}$).动点P满足PA=$\frac{1}{2}$PB.则动点P轨迹的极坐标方程为ρ=$\frac{2}{3}$cosθ+$\frac{2\sqrt{3}}{3}$sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.2016年元旦来临之际,某网站举行一次促销答题话动,若在网站给出一道多项选择题,答题者选出所有的正确选的概率为m,此时送出50元优惠券,选出一部分(没有全部选出,但也没有选出错误项)的概率为n,此时送出20元优惠券,选出错误选项(即包含错误选项)的概率为0.2,此时不送优惠券,则$\frac{1}{m}$+$\frac{9}{n}$的最小值为(  )
A.10B.20C.25D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.2015年秋季开始,本市初一学生开始进行开放性科学实践活动,学生可以在全市范围内进行自主选课类型活动,选课数目、选课课程不限.为了了解学生的选课情况,某区有关部门随机抽取本区600名初一学生,统计了他们对于五类课程的选课情况,用“+”表示选,“-”表示不选.结果如表所示:
人数   课程课程一课程二课程三课程四课程五
  50++-+-
  80++---
  125+-+-+
  150-+++-
  94+--++
  76--++-
  25--+-+
(1)估计学生既选了课程三,又选了课程四的概率;
(2)估计学生在五项课程中,选了三项课程的概率;
(3)如果这个区的某学生已经选了课程二,那么其余四项课程中他选择哪一项的可能性最大?

查看答案和解析>>

同步练习册答案