精英家教网 > 高中数学 > 题目详情
1.(1-x)3(1+x)10展开式中x5的系数为-63.

分析 根据(1-x)3(1+x)10展开式中各项的特征,得出展开式中x5的系数是由两个二项展开式的项组成,由此求出答案.

解答 解:∵(1-x)3(1+x)10=[${C}_{3}^{0}$+${C}_{3}^{1}$•(-x)+${C}_{3}^{2}$•(-x)2+${C}_{3}^{3}$•(-x)3]
•(${C}_{10}^{0}$+${C}_{10}^{1}$•x+${C}_{10}^{2}$•x2+${C}_{10}^{3}$•x3+${C}_{10}^{4}$•x4+${C}_{10}^{5}$•x5+…)
=(1-3x+3x2-x3)(1+10x+45x2+120x3+210x4+252x5+…)
=(1×252-3×210+3×120-1×45)x5+…;
∴展开式中x5的系数是252-630+360-45=-63.
故答案为:-63.

点评 本题考查了二项式展开式的应用问题,也考查了逻辑思维能力与计算能力,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.算式40-20=4×5中,在横线中填入两个正整数,使它们的乘积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为(  )
A.$\frac{1}{15}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(n)=1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$,g(n)=$\frac{1}{2}$(3-$\frac{1}{{n}^{2}}$),n∈N*
(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;
(2)猜想f(n)与g(n)的大小关系,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为($\frac{3}{5}$,$\frac{4}{5}$),记∠COA=α.
(Ⅰ)求$\frac{1+sin2α}{1+cos2α}$的值;
(Ⅱ)求cos∠COB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin600°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),上顶点为A,左顶点为B,设P是椭圆上的任一点,则△PAB的最大值为$\sqrt{2}$+1,若已知M(-$\sqrt{3}$,0),N($\sqrt{3}$,0),点Q为椭圆上的任意一点,则$\frac{1}{|QN|}+\frac{4}{|QM|}$的最小值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列类比推理中,结论正确的个数是(  )
①由a(b+c)=ab+ac类比得到loga(x+y)=logax+logay
②由a(b+c)=ab+ac类比得到sin(x+y)=sinx+siny
③由(ab)n=anbn类比得到(x+y)n=xn+yn
④由(a+b)+c=a+(b+c)类比得到(xy)z=x(yz)
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),且x∈[0,$\frac{2π}{3}$].
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$及|$\overrightarrow{a}$+$\overrightarrow{b}$|;
(2)若f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-2λ|$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值为-$\frac{3}{2}$,求实数λ的值.

查看答案和解析>>

同步练习册答案