精英家教网 > 高中数学 > 题目详情
已知圆C的极坐标方程为ρ2-4ρ(sinθ+cosθ)+6=0.
(1)求圆C的普通方程;
(2)求圆C的参数方程;
(3)设P(x,y)是圆C上一点,求x+y的最大值.
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:(1)把
x=ρcosθ
y=ρsinθ
代入圆C的极坐标方程为ρ2-4ρ(sinθ+cosθ)+6=0,即可得出圆C的普通方程.
(2)由x2+y2-4y-4x+6=0,配方为(x-2)2+(y-2)2=2,令x=2+
2
cosθ
y=2+
2
sinθ
(θ为参数).
即可得出圆C的参数方程.
(3)由(2)可得x+y=4+
2
cosθ+
2
sinθ=4+2sin(θ+
π
4
)
即可得出.
解答: 解:(1)由圆C的极坐标方程为ρ2-4ρ(sinθ+cosθ)+6=0,
∴x2+y2-4y-4x+6=0,即为圆C的普通方程.
(2)由x2+y2-4y-4x+6=0,配方为(x-2)2+(y-2)2=2.
可得圆C的参数方程为
x=2+
2
cosθ
y=2+
2
sinθ
x=2+
2
cosθ
(θ为参数).
(3)由(2)可得x+y=4+
2
cosθ+
2
sinθ=4+2sin(θ+
π
4
)
≤6.
当且仅当sin(θ+
π
4
)
=1时取等号.
∴x+y的最大值为6.
点评:本题考查了极坐标方程化为普通方程、圆的参数方程、两角和差的正弦公式、正弦函数的单调性值域,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2
x
-x
(1)判断f(x)的奇偶性;
(2)用定义证明f(x)在(0,+∞)上为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

试用综合法或分析法证明:已知a>b>c,求证:
1
a-b
+
1
b-c
+
1
c-a
>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>0,b>0)的离心率
3
2
,且过焦点与长轴垂直的弦长为1.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线l与椭圆C相交于A,B两点,且|AB|=
3
2
,O为坐标原点,是否存在直线l,使得△OAB面积最大?如果存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5},全集U=R.
(1)若A∩B=∅,求实数a的取值范围.
(2)若∁UB?A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+
1
x
),且f(x)在x=
1
2
处的切线方程为y=g(x)
(Ⅰ)求y=g(x)的解析式;
(Ⅱ)证明:当x>0时,恒有f(x)≥g(x);
(Ⅲ)证明:若ai>0(1≤i≤n,i,n∈N*),且
n
i=1
ai
=1,则(a1+
1
a1
)(a2+
1
a2
)…(an+
1
an
)≥(
n2+1
n
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinxcosx-2cos2x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且满足Sn=2an-n(n∈N*
(1)求数列{an}的通项an的表达式.
(2)记bn=an+1,Tn=
 
1≤i≤j≤n
bibj(i,j∈N*),证明:
1
7
T1
T2
+
T1T3
T2T4
+…+
T1•T3T2n-1
T2•T4T2n
4
21
(n∈N*)(其中
 
1≤i≤j≤n
bibj表示所有的积bibj(1≤i≤j≤n)的和)

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两位同学学完导数知识后,对三次多项式函数f(x)=ax3+bx2+cx+d(x∈R,a≠0,a、b、c、d∈R)进行了研究.在一次交流时.提出了如下结果.
①若a>0时,则f(x)存在单调递增区间;若a<0时,则f(x)存在单调递减区间;
②f(x)的零点个数可能是1个,或2个,或3个;
③有极值的充要条件是b2≥3ac;
④图象上总存在不同的两点A,B,在A,B两点处的切线互相平行.
请你给予评价:
(1)上述结果是正确的
 
(填上所有正确的序号);
(2)上述结果若有错误的,填上错误的序号并更正:
 

查看答案和解析>>

同步练习册答案