精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(x+
1
x
),且f(x)在x=
1
2
处的切线方程为y=g(x)
(Ⅰ)求y=g(x)的解析式;
(Ⅱ)证明:当x>0时,恒有f(x)≥g(x);
(Ⅲ)证明:若ai>0(1≤i≤n,i,n∈N*),且
n
i=1
ai
=1,则(a1+
1
a1
)(a2+
1
a2
)…(an+
1
an
)≥(
n2+1
n
n
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性,利用导数研究曲线上某点切线方程
专题:综合题,导数的综合应用
分析:(Ⅰ)求导数,可得切线的斜率,即可求y=g(x)的解析式;
(Ⅱ)令t(x)=f(x)-g(x),确定其单调性,求出最小值,即可证明结论;
(Ⅲ)先求出f(x)在(
1
n
,ln(n+
1
n
))处的切线方程,再证明:f(x)≥
n-n3
1+n2
x-
1-n2
1+n2
+ln(n+
1
n
),即可得出结论.
解答: (Ⅰ)解:∵f(x)=ln(x+
1
x
),
∴f′(x)=
x2-1
x3+x
,f(
1
2
)=-ln
5
2

∴f′(
1
2
)=-
6
5

∴f(x)在x=
1
2
处的切线方程为y-ln
5
2
=-
6
5
(x-
1
2

即y=g(x)的解析式g(x)=-
6
5
x+
3
5
+ln
5
2

(Ⅱ)证明:令t(x)=f(x)-g(x)=ln(x+
1
x
)+
6
5
x-
3
5
-ln
5
2
(x>0),
∴t′(x)=
(x-
1
2
)(6x2+8x+10)
5(x3+x)

∴(0,
1
2
)上,t′(x)<0;x>
1
2
,t′(x)>0,∴t(x)min=t(
1
2
)=0,
∴t(x)≥0,即当x>0时,恒有f(x)≥g(x);
(Ⅲ)证明:先求出f(x)在(
1
n
,ln(n+
1
n
))处的切线方程,
∵f′(
1
n
)=
n-n3
1+n2

∴f(x)在(
1
n
,ln(n+
1
n
))处的切线方程为y-ln(n+
1
n
)=
n-n3
1+n2
(x-
1
n
),
即y=
n-n3
1+n2
x-
1-n2
1+n2
+ln(n+
1
n
).
下证明:f(x)≥
n-n3
1+n2
x-
1-n2
1+n2
+ln(n+
1
n
).
令h(x)=ln(x+
1
x
)-
n-n3
1+n2
x+
1-n2
1+n2
-ln(n+
1
n
),则
h′(x)=
(x-
1
n
)[(n3-n)x2+2n2x+n3+n]
(x3+x)(n2+1)

∵0<x<
1
n
,∴h′(x)<0,x>
1
n
,h′(x)>0,
∴h(x)min=h(
1
n
)=0,
∴f(x)≥
n-n3
1+n2
x-
1-n2
1+n2
+ln(n+
1
n
).
∵ai>0,∴ln(ai+
1
ai
)≥
n-n3
1+n2
•ai-
1-n2
1+n2
+ln(n+
1
n
).
n
i=1
ln(ai+
1
ai
)≥
n-n3
1+n2
n
i=1
ai
-n•
1-n2
1+n2
+nln(n+
1
n
)=nln(n+
1
n

∴(a1+
1
a1
)(a2+
1
a2
)…(an+
1
an
)≥(
n2+1
n
n
点评:本题考查利用导数研究曲线上某点切线方程,考查不等式的证明,考查学生分析解决问题的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角α的终边落在直线5x-12y=0上.
(1)求sinα,cosα,tanα的值;
(2)已知tanα=
3
,π<α<
2
.求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax4+bx3,(其中a、b为常数),当x=
3
4
时,取得极值-
27
256

(1)求f(x)的解析式;
(2)若f(x)在(k,﹢∞﹚上为增函数,求k的最小值;
(3)设点M(-
1
2
,-p2+pq+
1
8
﹚,对任意p∈[1,
9
8
],过点M总可以做函数y=f(x)图象的四条切线,求q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等比数列,首项为a,公比为q,前n项和为Sn,记Tn=a12+a22+…+an2
(1)若a1=1,S3=3,求数列{an}的通项公式;
(2)若Sn=-
1
2
an+3,求证:S2n=
2
3
Tn
(3)计算:
lim
n→∞
Sn
Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的极坐标方程为ρ2-4ρ(sinθ+cosθ)+6=0.
(1)求圆C的普通方程;
(2)求圆C的参数方程;
(3)设P(x,y)是圆C上一点,求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
a
2
x2
(1)当a=2时,求曲线y=f(x)在点P(3,f(3))处的切线方程;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
-2x-x2+3
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为梯形,AB∥DC,DC=4,∠DAB=60°,侧面△PAD和△PAB均为边长为2的正三角形,M为线段PC的中点.
(Ⅰ)求证:PD⊥AB;
(Ⅱ)求二面角P-BC-D的平面角的正切值;
(Ⅲ)试问:在线段AB上是否存在点N,使得MN与平面PDB的交点恰好是△PDB的重心?若存在,求出AN的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点坐标为A(1,0),B(-2,-3),C(3,0),则BC边上的高所在的直线的方程为
 

查看答案和解析>>

同步练习册答案