精英家教网 > 高中数学 > 题目详情
已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5},全集U=R.
(1)若A∩B=∅,求实数a的取值范围.
(2)若∁UB?A,求实数a的取值范围.
考点:交、并、补集的混合运算
专题:计算题,集合
分析:(1)由A∩B=∅用数轴解a,(2)A∩B=∅等价于A⊆∁UB;则由(1)可直接得到(2)的解.
解答: 解:(1)∵A={x|a≤x≤a+3},B={x|x<-1或x>5},
又∵A∩B=∅,
a≥-1
a+3≤5

解得,-1≤a≤2.
(2)∵若A∩B=∅,则A⊆∁UB;
则这时-1≤a≤2.
则∁UB?A的解为a<-1或a>2.
点评:本题考查了集合间的相互关系,同时应用了否定,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x+1
x+2
,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x丨x2-2x-3≤0},集合B={x丨x-m+2≤0},若A∩B=[-1,3],求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-2<x≤m-3},B={x|3n+4<x≤2},若A=B,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=x2-3x+2的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的极坐标方程为ρ2-4ρ(sinθ+cosθ)+6=0.
(1)求圆C的普通方程;
(2)求圆C的参数方程;
(3)设P(x,y)是圆C上一点,求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-x+2m+1=0},B={x|x<0},若A∩B≠∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-a2x(a>0)
(Ⅰ)若函数f(x)在x=1处取得极值,求f(x)的解析式;
(Ⅱ)求函数f(x)在[0,1]上的最小值;
(Ⅲ)设g(x)=
1
2
x2,若函数F(x)=f(x)-g(x)在[2,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为
5
4

(1)求抛物线C的方程;
(2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同),求当∠MAB为钝角时,点A的纵坐标y1的取值范围.

查看答案和解析>>

同步练习册答案