精英家教网 > 高中数学 > 题目详情
设集合A={x|-2<x≤m-3},B={x|3n+4<x≤2},若A=B,求m,n的值.
考点:集合的相等
专题:计算题,集合
分析:由A=B知,-2=3n+4,m-3=2;从而求出m,n的值.
解答: 解:∵A={x|-2<x≤m-3},B={x|3n+4<x≤2},A=B;
∴-2=3n+4,m-3=2;
则n=-2,m=5.
点评:集合A=集合B,则集合的元素相同.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

图为一个半球挖去一个圆锥的几何体的三视图,则该几何体的体积为(  )
A、
32π
3
B、8π
C、
16π
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+(x-c)|x-c|,a<0,c>0.
(1)当a=-
3
4
,c=
1
4
时,求函数f(x)的单调区间;
(2)当c=
a
2
+1时,若f(x)≥
1
4
对x∈(c,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

试用综合法或分析法证明:已知a>b>c,求证:
1
a-b
+
1
b-c
+
1
c-a
>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+2x-3<0},B={x|x2-2x≥0},求∁R(A∪B),(∁RA)∩B,A∪(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>0,b>0)的离心率
3
2
,且过焦点与长轴垂直的弦长为1.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线l与椭圆C相交于A,B两点,且|AB|=
3
2
,O为坐标原点,是否存在直线l,使得△OAB面积最大?如果存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5},全集U=R.
(1)若A∩B=∅,求实数a的取值范围.
(2)若∁UB?A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinxcosx-2cos2x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集I=R,集合A={x|x2-2x+m<0,m∈R},集合B={a∈R|ax2+4ax-4<0,对任意实数x恒成立},(∁RA)∩B≠∅,求实数m的范围.

查看答案和解析>>

同步练习册答案