精英家教网 > 高中数学 > 题目详情
10.设M是△ABC所在平面内的一点,若$\overrightarrow{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AM}$,|$\overrightarrow{BC}$|=2,则$\overrightarrow{MB}$•$\overrightarrow{MC}$=(  )
A.-1B.1C.-2D.2

分析 根据题意,画出图形,结合图形,得出M为AB的中点,从而求出的值.

解答 解:∵$\overrightarrow{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AM}$,
∴M是BC的中点,
∵|$\overrightarrow{BC}$|=2
∴|$\overrightarrow{MB}$|=|$\overrightarrow{MC}$|=$\frac{1}{2}$|$\overrightarrow{BC}$|=1,
∴$\overrightarrow{MB}$•$\overrightarrow{MC}$=|$\overrightarrow{MB}$|•|$\overrightarrow{MC}$|cos180°=-1,
故选:A.

点评 本题考查了平面向量的线性表示与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知复数z满足$\frac{z}{2+i}$为实数,则$\overline{z}$-z=4i,若|z-m|$<2\sqrt{2}$,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果不等式组$\left\{\begin{array}{l}{y≥0}\\{2x≥y}\\{kx-y+2≥0}\end{array}\right.$表示的平面区域是一个直角三角形,则该三角形的面积为(  )
A.$\frac{4}{5}$B.$\frac{16}{5}$C.$\frac{4}{5}$或$\frac{16}{5}$D.$\frac{8}{5}$或$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=|ax-1|.
(Ⅰ)若f(x)≤2的解集为[-6,2],求实数a的值;
(Ⅱ)当a=2时,若存在x∈R,使得不等式f(2x+1)-f(x-1)≤7-3m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足:${a_1}=2,{a_{n+1}}+{a_n}=9×{2^{n-1}}$.
(1)记${b_n}={a_n}-3×{2^{n-1}}$,求证:数列{bn}为等比数列;
(2)求数列{nan}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某架飞机载有5位空降兵空降到A、B、C三个地点,每位空降兵都要空降到A、B、C中任意一个地点,且空降到每一个地点的概率都是$\frac{1}{3}$,用ξ表示地点C空降人数,求:
(Ⅰ)地点A空降1人,地点B、C各空降2人的概率;
(Ⅱ)随机变量ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow a,\overrightarrow b$为非零向量,$(\overrightarrow a-2\overrightarrow b)⊥\overrightarrow a,(\overrightarrow b-2\overrightarrow a)⊥\overrightarrow b$,则$\overrightarrow a,\overrightarrow b$夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆上A、B、C、D四点依次排列,AB=BC=3,CD=4,DA=8,则该圆的半径为$\frac{{3\sqrt{205}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=$\left\{\begin{array}{l}{ax^2+x,x>0}\\{-2x,x≤0}\end{array}\right.$,若不等式f(x-2)≥f(x)对一切x∈R恒成立,则a的最小值为(  )
A.-$\frac{7}{16}$B.-$\frac{9}{16}$C.-$\frac{1}{2}$D.-$\frac{1}{4}$

查看答案和解析>>

同步练习册答案