精英家教网 > 高中数学 > 题目详情
20.已知关于x的不等式|x+1|+|x|≥k恒成立,则实数k的取值范围是(-∞,1].

分析 根据绝对值的意义:|x+1|+|x|表示数轴上的x对应点到-1和0对应点的距离之和,它的最小值等于1,可得答案.

解答 解:|x+1|+|x|表示数轴上的x对应点到-1和0对应点的距离之和,它的最小值等于1,
由关于x的不等式|x+1|+|x|≥k恒成立知,k≤1.
故答案为:(-∞,1].

点评 本题考查绝对值的意义,绝对值不等式的解法,求出|x+1|+|x|的最小值,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=2cos2x+asinx-4在$[{\frac{π}{6},\frac{π}{2}}]$内的图象恒在x轴下方,则a的取值范围为a<4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x2+(m+1)x+(m+1)的图象与x轴有公共点,则m的取值范围是(-∞,-1]∪[3,+∞)(用区间表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点分别为A1,A2.,A1关于直线bx+ay=0的对称点在圆(x+a)2+y2=a2上,则椭圆的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若关于x的一元二次方程3x2+2ax+1=0没有实数根,则a的取值范围是(  )
A.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)B.(-$\sqrt{3}$,$\sqrt{3}$)C.[-$\sqrt{3}$,$\sqrt{3}$]D.[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2-lnx(a∈R)
(1)当a=1时,求函数y=f(x)的单调区间;
(2)若?x∈(0,1],|f(x)|≥1恒成立,求a的取值范围;
(3)若a=$\frac{e}{2}$,证明:ex-1f(x)≥x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于在区间[m,n]上有意义的两个函数f(x)与g(x),如果对任意x∈[m,n]均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的;否则称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x-3a),与f2(x)=loga$\frac{1}{x-a}$(a>0,a≠1),给定区间[a+2,a+3].
(1)若f1(x)与f1(x)在给定区间[a+2,a+3]上都有意义,求a的取值范围;
(2)讨论f1(x)与f1(x)在给定区间[a+2,a+3]上是否是接近的?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=$\sqrt{2}$,E,F为PD上两点,且PF=ED=$\frac{1}{3}$PD.
(1)求证:BF∥面ACE;
(2)求异面直线PC与AE所成角的余弦值;
(3)求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=2cos2x+$\sqrt{3}$sin2x.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)求函数f(x)的最小值及x的取值集合.

查看答案和解析>>

同步练习册答案