精英家教网 > 高中数学 > 题目详情
已知在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c.求证:
a-b
a+b
=
tan
A-B
2
tan
A+B
2
考点:三角函数中的恒等变换应用
专题:三角函数的求值
分析:在△ABC中,利用正弦定理可得端
a-b
a+b
=
sinA-sinB
sinA+sinB
,再利用和差化积公式化简即可证得结论成立.
解答: 证明:在△ABC中,∵左端
a-b
a+b
=
sinA-sinB
sinA+sinB
=
2cos
A+B
2
sin
A-B
2
2sin
A+B
2
cos
A-B
2
=
tan
A-B
2
tan
A+B
2
=右端,
∴原结论成立.
点评:本题考查三角函数中的恒等变换应用,着重考查正弦定理与和差化积公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(0,+∞),对任意x,y∈(0,+∞)都有f(
x
y
)=f(x)-f(y),且当x>1时,f(x)>0.
(1)求证f(1)=0;
(2)判断f(x)在(0,+∞)上的单调性;
(3)若f(2)=1,不等式f(x)-f(
1
x-3
)≤2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c是周长不超过2π的三角形边长,判断sina,sinb,sinc能否构成三角形?请分类讨论.

查看答案和解析>>

科目:高中数学 来源: 题型:

边长为4的菱形ABCD中,∠A=60°,E为线段CD上的中点,以BE为折痕,将△ACE折起,使得二面角C-BE-C成θ角(如图)
(Ⅰ)当θ在(0,π)内变化时,直线AD与平面BCE是否会平行?请说明理由;
(Ⅱ)若θ=90°,求直线CA与平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1).
(1)当
a
b
时,求cos2x-sin2x的值;
(2)设函数f(x)=2(
a
+
b
)•
b
,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=
3
,b=2,sinB=
6
3
,求f(x)+4cos(2A+
π
6
) (x∈[0,
π
2
])的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商店为了吸引顾客,设计了一个摸球小游戏,顾客从装有1个红球,1个白球,3个黑球的袋中一次随机的摸2个球,设计奖励方式如下表:
结果奖励
1红1白10元
1红1黑5元
2黑2元
1白1黑不获奖
(1)某顾客在一次摸球中获得奖励X元,求X的概率分布表与数学期望;
(2)某顾客参与两次摸球,求他能中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a+b=
2
3
,ab=2,求下列代数式的值
(1)a2b+2a2b2+ab2
(2)a2+b2
(3)a3+b3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(m-1)x+1.
(Ⅰ)若方程f(x)=0有两个不相等的实数根,求实数m的取值范围;
(Ⅱ)若关于x的不等式f(x)<0的解集为(x1,x2),且0<|x1-x2|<2
3
,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-2<x<3},B={x|
4
x+3
>1}.
(1)求集合A∩B;
(2)若不等式2ax2-2bx+3a2b<0的解集为B,求a,b的值.

查看答案和解析>>

同步练习册答案